滑档是什么意思| 皂角米是什么东西| 夏天怕冷是什么原因| 囗腔溃疡吃什么维生素| 道德经是什么意思| pet什么意思| 红薯什么季节成熟| 经常拉肚子什么原因| 脚底起泡是什么原因| 震慑是什么意思| 变性淀粉是什么| 以至于是什么意思| 什么的毛主席| 什么茶养胃| 越狱男主角叫什么| 秦始皇什么星座| 番茄和蕃茄有什么区别| 发声是什么意思| 女性分泌物像豆腐渣用什么药| 冷笑话是什么意思| 兔子吃什么蔬菜| 00年属龙的是什么命| 陆勤合格什么意思| 痢疾是什么病| 蜜蜂飞进家里预示什么| 什么水果降血压| 香港有什么好吃的| 蛇五行属什么| 梦见下大雨是什么意思| c2能开什么车| 小便有点红是什么原因| 骆驼趾是什么意思| 深棕色是什么颜色| 肾水不足是什么意思| 外露什么意思| 吃什么容易减肥| 什么快递可以寄宠物| 宫颈粘膜慢性炎是什么意思| 梦见打狼是什么预兆| 二甲双胍有什么副作用| 受益匪浅是什么意思| mcm牌子属于什么档次| 七月上旬是什么时候| 外阴裂口用什么药| 化疗后吃什么增加白细胞| 夏天脸上皮肤痒是什么原因| 70年是什么婚| 悬脉是什么意思| 水痘疫苗第二针什么时候打| 送男生什么礼物| 北海特产有什么值得带| 模特是什么意思| 1988年是什么命| 10.5号是什么星座| 女人自尊心强说明什么| 光棍一条是什么生肖| la是什么牌子| 日照香炉生紫烟的香炉是什么意思| 上当是什么意思| 肚子痛吃什么药| 优衣库属于什么档次| 慢阻肺吃什么药| 血管细是什么原因| 类似蜈蚣的虫子叫什么| 牛头人什么意思| 治安大队是干什么的| 秦始皇什么星座| 小孩智力发育迟缓挂什么科| 路征和景甜什么关系| 液基薄层细胞学检查是什么| 正痛片别名叫什么| 泄气的意思是什么| 天津古代叫什么| 梦到被蛇咬是什么意思| 肌酐高有什么症状表现| 甲申日五行属什么| 无菌性前列腺炎吃什么药效果好| 天壤之别是什么意思| 甲状腺结节看什么科| 合肥古代叫什么| 大米里放什么不生虫子| 子宫内膜不均匀是什么意思| 刚怀孕有什么办法打掉| 前列腺炎不能吃什么| 瞳孔扩散意味着什么| 淋巴结清扫是什么意思| 海参和辽参有什么区别| 每天早上喝一杯蜂蜜水有什么好处| 双手发麻是什么病的前兆| 一个点是什么意思| 绝经前有什么症状| 感光度是什么意思| 口腔溃疡是什么原因引起的| 碳水化合物是什么意思| 甲亢是什么意思| 吃什么愈合伤口恢复最快| 病毒性咽喉炎吃什么药| 鸡奸是什么意思| 牛仔裤搭配什么衣服好看| 花花世界不必当真是什么歌| 副处是什么级别| 吃什么安神有助于睡眠| 大便不成形吃什么药| 小姑娘为什么会得多囊卵巢| 女人做爱什么感觉| 头痛应该挂什么科| 核医学科是检查什么的| 痛风吃什么药治疗最有效| 手心痒是什么原因| 心急是什么病的症状| 尿液很黄是什么原因| 赛马不相马什么意思| 嘴巴周围长痘痘是什么原因| 吃什么有助于睡眠效果好| 绝育手术对女性有什么危害| 9月25号什么星座| 天蝎座和什么星座不合| 当你从我眼前慢慢走过是什么歌| 什么的花瓣| 红是什么生肖| d2聚体高是什么意思| 舌头白腻厚苔是什么原因| 阴囊潮湿吃什么药好| 什么的珍珠| 调理内分泌失调吃什么药效果好| 24k镀金是什么意思| 猫咪结膜炎用什么药好| 什么是中元节| 真实的印度是什么样的| 宫腔内稍高回声是什么意思| 正常的月经是什么颜色| 孕激素高是什么原因| 尿路感染吃什么药消炎| 咖啡对心脏有什么影响| 宫颈肥大是什么意思| 小螃蟹吃什么食物| 康斯坦丁是什么意思| ecco是什么品牌| poppy什么意思| 味粉是什么调料| 睡觉时间长是什么原因| 双头蛇是什么意思| 肠胃炎吃什么药| 受虐倾向是什么意思| 大爷是什么意思| lad是什么意思| 看皮肤挂什么科| 生化是什么| 32岁属什么| 消化腺包括什么| 肾衰竭有什么症状| 圆谎是什么意思| 大肝功能是检查什么| 雾霾是什么意思| 瘟神是什么意思| 人大常委会主任是什么级别| 为什么叫基围虾| 肝瘘是什么| 冰心的原名叫什么| 苹果什么季节成熟| 口腔医学专业学什么| 青少年吃什么钙片有助于长高| 什么一| 结节是什么症状| 什么数字最听话| 摆谱是什么意思| 静夜思是什么季节| 鼻窦炎有什么症状| 爱啃指甲是什么原因| 眼睛近视缺什么维生素| 鹿下面一个几字读什么| 脚底心发热是什么原因| mup是什么意思| 月德是什么意思| 约会去什么地方比较好| 剑走偏锋是什么意思| 女人气虚吃什么补最快| 心动是什么意思| 藕色是什么颜色| 反应性细胞改变炎症是什么意思| 骨刺是什么| 言过其实是什么意思| 93年属鸡的是什么命| 中将是什么级别| 为什么会长粉刺| 坐飞机要什么证件| 凝视的近义词是什么| 嗓子疼吃什么食物好| 少阳证是什么意思| 形体是什么意思| 脖子下面是什么部位| 什么是空调病| 蛇缠腰是什么症状| 脚有酸味是什么原因| 兔子拉稀是什么原因| 刑妻克子是什么意思| 身上痒但是什么都没有| 欧巴桑什么意思| 山东简称是什么| 斑鸠和鸽子有什么区别| 升读什么字| 如意什么意思| 时光荏苒岁月如梭是什么意思| bb霜是什么| 冠状动脉肌桥是什么病| 什么样的情况下需要做肠镜| 小孩睡觉出很多汗是什么原因| 前白蛋白是什么意思| 敲打是什么意思| 碘酒和碘伏有什么区别| 5.2号是什么星座| btc是什么意思| 狗咬了不能吃什么| 觉悟高是什么意思| hook是什么意思| 低血钾是什么原因引起的| 一什么蘑菇| 骆驼奶有什么功效| 六月底是什么星座| 皮肤瘙痒用什么药最好| 排卵期出血是什么原因| 血虚是什么原因造成的| 孕妇吃西红柿对胎儿有什么好处| 银杏叶片治什么病| 什么山不能爬脑筋急转弯| 斯里兰卡属于什么国家| 真命天子是什么生肖| 四川代表什么生肖| 江诗丹顿属于什么档次| 长痘吃什么水果好| 孩子流口水是什么原因引起的| 疝气长在什么位置图片| ug是什么意思| 易经是什么| 人体缺钠会出现什么症状| 卡司是什么意思| 什么影院| 哺乳期胃疼可以吃什么药| 尿道炎吃什么药好得快| 赤藓糖醇是什么| 参加白事回来注意什么| 什么叫种水| 脾肾阴虚有什么症状| 养狗的人容易得什么病| 手脚发麻是什么原因| 六冲是什么意思| 矢气是什么意思| 告状是什么意思| 白带有血丝是什么情况| 什么人容易得白肺病| 卫衣是什么| 大什么一什么| 浪花像什么| 甲醛是什么气味| 什么人不能喝牛奶| 六月生日是什么星座| 什么叫磁场| bdsm什么意思| 姜黄与生姜有什么区别| 梅子是什么水果| 中耳炎不能吃什么食物| 什么是肌张力| 蜂蜜吃有什么好处| 脑膜炎有什么症状| 百度Jump to content

树牢生态文明意识加快建设美丽河南

From Wikipedia, the free encyclopedia
(Redirected from Earth's gravity field)
百度 +1

Earth's gravity measured by NASA GRACE mission, showing deviations from the theoretical gravity of an idealized, smooth Earth, the so-called Earth ellipsoid. Red shows the areas where gravity is stronger than the smooth, standard value, and blue reveals areas where gravity is weaker.[1]

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).[2][3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s?2) or equivalently in newtons per kilogram (N/kg or N·kg?1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s2 (32 ft/s2). This means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.8 metres per second (32 ft/s) every second.

The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s2 (32.1740 ft/s2) by definition.[4] This quantity is denoted variously as gn, ge (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s2 (32.087686258 ft/s2)),[5] g0, or simply g (which is also used for the variable local value).

The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the object. Gravity does not normally include the gravitational pull of the Moon and Sun, which are accounted for in terms of tidal effects.

Variation in magnitude

[edit]

A non-rotating perfect sphere of uniform mass density, or whose density varies solely with distance from the centre (spherical symmetry), would produce a gravitational field of uniform magnitude at all points on its surface. The Earth is rotating and is also not spherically symmetric; rather, it is slightly flatter at the poles while bulging at the Equator: an oblate spheroid. There are consequently slight deviations in the magnitude of gravity across its surface.

Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s2 at the surface of the Arctic Ocean.[6] In large cities, it ranges from 9.7806 m/s2 [7] in Kuala Lumpur, Mexico City, and Singapore to 9.825 m/s2 in Oslo and Helsinki.

Conventional value

[edit]

In 1901, the third General Conference on Weights and Measures defined a standard gravitational acceleration for the surface of the Earth: gn = 9.80665 m/s2. It was based on measurements at the Pavillon de Breteuil near Paris in 1888, with a theoretical correction applied in order to convert to a latitude of 45° at sea level.[8] This definition is thus not a value of any particular place or carefully worked out average, but an agreement for a value to use if a better actual local value is not known or not important.[9] It is also used to define the units kilogram force and pound force.

Latitude

[edit]
The differences of Earth's gravity around the Antarctic continent.

The surface of the Earth is rotating, so it is not an inertial frame of reference. At latitudes nearer the Equator, the outward centrifugal force produced by Earth's rotation is larger than at polar latitudes. This counteracts the Earth's gravity to a small degree – up to a maximum of 0.3% at the Equator – and reduces the apparent downward acceleration of falling objects.

The second major reason for the difference in gravity at different latitudes is that the Earth's equatorial bulge (itself also caused by centrifugal force from rotation) causes objects at the Equator to be further from the planet's center than objects at the poles. The force due to gravitational attraction between two masses (a piece of the Earth and the object being weighed) varies inversely with the square of the distance between them. The distribution of mass is also different below someone on the equator and below someone at a pole. The net result is that an object at the Equator experiences a weaker gravitational pull than an object on one of the poles.

In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.[2][10]

Altitude

[edit]
The gravity of a body is inversely proportional to the distance form that body. This graph displays this relation as the distance changes from the surface (0 km) to 30000 km.
Earth's gravity vs. distance from it, from the surface to 30000 km
Earth vs Mars vs Moon gravity at elevation

Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%. An additional factor affecting apparent weight is the decrease in air density at altitude, which lessens an object's buoyancy.[11] This would increase a person's apparent weight at an altitude of 9,000 metres by about 0.08%.

It is a common misconception that astronauts in orbit are weightless because they have flown high enough to escape the Earth's gravity. In fact, at an altitude of 400 kilometres (250 mi), equivalent to a typical orbit of the ISS, gravity is still nearly 90% as strong as at the Earth's surface. Weightlessness actually occurs because orbiting objects are in free-fall.[12]

The effect of ground elevation depends on the density of the ground (see Local geology). A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth's surface feels less gravity when the elevation is higher.

The following formula approximates the Earth's gravity variation with altitude:

Calculator
Re 6,371.00877 km
g0 9.80665 m/s2
h 0 km
gh 9.80665 m/s2

where

The formula treats the Earth as a perfect sphere with a radially symmetric distribution of mass; a more accurate mathematical treatment is discussed below.

Depth

[edit]
Gravity at different internal layers of Earth (1 = continental crust, 2 = oceanic crust, 3 = upper mantle, 4 = lower mantle, 5+6 = core, A = crust-mantle boundary)
Earth's radial density distribution according to the Preliminary Reference Earth Model (PREM).[13]
Earth's gravity according to the Preliminary Reference Earth Model (PREM).[13] Two models for a spherically symmetric Earth are included for comparison. The dark green straight line is for a constant density equal to the Earth's average density. The light green curved line is for a density that decreases linearly from center to surface. The density at the center is the same as in the PREM, but the surface density is chosen so that the mass of the sphere equals the mass of the real Earth.

An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric. The force of gravity at a radius r depends only on the mass inside the sphere of that radius. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another consequence is that the gravity is the same as if all the mass were concentrated at the center. Thus, the gravitational acceleration at this radius is[14]

where G is the gravitational constant and M(r) is the total mass enclosed within radius r. This result is known as the Shell theorem; it took Isaac Newton 20 years to prove this result, delaying his work on gravity.[15]:?13?

If the Earth had a constant density ρ, the mass would be M(r) = (4/3)πρr3 and the dependence of gravity on depth would be

The gravity g′ at depth d is given by g′ = g(1 ? d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ0 at the center to ρ1 at the surface, then ρ(r) = ρ0 ? (ρ0 ? ρ1) r / R, and the dependence would be

The actual depth dependence of density and gravity, inferred from seismic travel times (see Adams–Williamson equation), is shown in the graphs below.

Local topography and geology

[edit]

Local differences in topography (such as the presence of mountains), geology (such as the density of rocks in the vicinity), and deeper tectonic structure cause local and regional differences in the Earth's gravitational field, known as gravity anomalies.[16] Some of these anomalies can be very extensive, resulting in bulges in sea level, and throwing pendulum clocks out of synchronisation.

The study of these anomalies forms the basis of gravitational geophysics. The fluctuations are measured with highly sensitive gravimeters, the effect of topography and other known factors is subtracted, and from the resulting data conclusions are drawn. Such techniques are now used by prospectors to find oil and mineral deposits. Denser rocks (often containing mineral ores) cause higher than normal local gravitational fields on the Earth's surface. Less dense sedimentary rocks cause the opposite.

A map of recent volcanic activity and ridge spreading. The areas where NASA GRACE measured gravity to be stronger than the theoretical gravity have a strong correlation with the positions of the volcanic activity and ridge spreading.

There is a strong correlation between the gravity derivation map of earth from NASA GRACE with positions of recent volcanic activity, ridge spreading and volcanos: these regions have a stronger gravitation than theoretical predictions.

Other factors

[edit]

In air or water, objects experience a supporting buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details.

The gravitational effects of the Moon and the Sun (also the cause of the tides) have a very small effect on the apparent strength of Earth's gravity, depending on their relative positions; typical variations are 2 μm/s2 (0.2 mGal) over the course of a day.

Direction

[edit]
A plumb bob determines the local vertical direction

Gravity acceleration is a vector quantity, with direction in addition to magnitude. In a spherically symmetric Earth, gravity would point directly towards the sphere's centre. As the Earth's figure is slightly flatter, there are consequently significant deviations in the direction of gravity: essentially the difference between geodetic latitude and geocentric latitude. Smaller deviations, called vertical deflection, are caused by local mass anomalies, such as mountains.

Comparative values worldwide

[edit]

Tools exist for calculating the strength of gravity at various cities around the world.[17] The effect of latitude can be clearly seen with gravity in high-latitude cities: Anchorage (9.826 m/s2), Helsinki (9.825 m/s2), being about 0.5% greater than that in cities near the equator: Kuala Lumpur (9.776 m/s2). The effect of altitude can be seen in Mexico City (9.776 m/s2; altitude 2,240 metres (7,350 ft)), and by comparing Denver (9.798 m/s2; 1,616 metres (5,302 ft)) with Washington, D.C. (9.801 m/s2; 30 metres (98 ft)), both of which are near 39° N. Measured values can be obtained from Physical and Mathematical Tables by T.M. Yarwood and F. Castle, Macmillan, revised edition 1970.[18]

Acceleration due to gravity in various cities
Location m/s2 ft/s2 Location m/s2 ft/s2 Location m/s2 ft/s2 Location m/s2 ft/s2
Anchorage 9.826 32.24 Helsinki 9.825 32.23 Oslo 9.825 32.23 Copenhagen 9.821 32.22
Stockholm 9.818 32.21 Manchester 9.818 32.21 Amsterdam 9.817 32.21 Kotagiri 9.817 32.21
Birmingham 9.817 32.21 London 9.816 32.20 Brussels 9.815 32.20 Frankfurt 9.814 32.20
Seattle 9.811 32.19 Paris 9.809 32.18 Montréal 9.809 32.18 Vancouver 9.809 32.18
Istanbul 9.808 32.18 Toronto 9.807 32.18 Zurich 9.807 32.18 Ottawa 9.806 32.17
Skopje 9.804 32.17 Chicago 9.804 32.17 Rome 9.803 32.16 Wellington 9.803 32.16
New York City 9.802 32.16 Lisbon 9.801 32.16 Washington, D.C. 9.801 32.16 Athens 9.800 32.15
Madrid 9.800 32.15 Melbourne 9.800 32.15 Auckland 9.799 32.15 Denver 9.798 32.15
Tokyo 9.798 32.15 Buenos Aires 9.797 32.14 Sydney 9.797 32.14 Nicosia 9.797 32.14
Los Angeles 9.796 32.14 Cape Town 9.796 32.14 Perth 9.794 32.13 Kuwait City 9.792 32.13
Taipei 9.790 32.12 Rio de Janeiro 9.788 32.11 Havana 9.786 32.11 Kolkata 9.785 32.10
Hong Kong 9.785 32.10 Bangkok 9.780 32.09 Manila 9.780 32.09 Jakarta 9.777 32.08
Kuala Lumpur 9.776 32.07 Singapore 9.776 32.07 Mexico City 9.776 32.07 Kandy 9.775 32.07

Mathematical models

[edit]

If the terrain is at sea level, we can estimate, for the Geodetic Reference System 1980, , the acceleration at latitude :

This is the International Gravity Formula 1967, the 1967 Geodetic Reference System Formula, Helmert's equation or Clairaut's formula.[19]

An alternative formula for g as a function of latitude is the WGS (World Geodetic System) 84 Ellipsoidal Gravity Formula:[20]

where

  • are the equatorial and polar semi-axes, respectively;
  • is the spheroid's eccentricity, squared;
  • is the defined gravity at the equator and poles, respectively;
  • (formula constant);

then, where ,[20]

where the semi-axes of the earth are:

The difference between the WGS-84 formula and Helmert's equation is less than 0.68 μm·s?2.

Further reductions are applied to obtain gravity anomalies (see: Gravity anomaly#Computation).

Estimating g from the law of universal gravitation

[edit]

From the law of universal gravitation, the force on a body acted upon by Earth's gravitational force is given by

where r is the distance between the centre of the Earth and the body (see below), and here we take to be the mass of the Earth and m to be the mass of the body.

Additionally, Newton's second law, F = ma, where m is mass and a is acceleration, here tells us that

Comparing the two formulas it is seen that:

So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth's mass (in kilograms), m1, and the Earth's radius (in metres), r, to obtain the value of g:[21]

This formula only works because of the mathematical fact that the gravity of a uniform spherical body, as measured on or above its surface, is the same as if all its mass were concentrated at a point at its centre. This is what allows us to use the Earth's radius for r.

The value obtained agrees approximately with the measured value of g. The difference may be attributed to several factors, mentioned above under "Variation in magnitude":

  • The Earth is not homogeneous
  • The Earth is not a perfect sphere, and an average value must be used for its radius
  • This calculated value of g only includes true gravity. It does not include the reduction of constraint force that we perceive as a reduction of gravity due to the rotation of Earth, and some of gravity being counteracted by centrifugal force.

There are significant uncertainties in the values of r and m1 as used in this calculation, and the value of G is also rather difficult to measure precisely.

If G, g and r are known then a reverse calculation will give an estimate of the mass of the Earth. This method was used by Henry Cavendish.

Measurement

[edit]

The measurement of Earth's gravity is called gravimetry.

Satellite measurements

[edit]
Gravity anomaly map from GRACE

Currently, the static and time-variable Earth's gravity field parameters are determined using modern satellite missions, such as GOCE, CHAMP, Swarm, GRACE and GRACE-FO.[22][23] The lowest-degree parameters, including the Earth's oblateness and geocenter motion are best determined from satellite laser ranging.[24]

Large-scale gravity anomalies can be detected from space, as a by-product of satellite gravity missions, e.g., GOCE. These satellite missions aim at the recovery of a detailed gravity field model of the Earth, typically presented in the form of a spherical-harmonic expansion of the Earth's gravitational potential, but alternative presentations, such as maps of geoid undulations or gravity anomalies, are also produced.

The Gravity Recovery and Climate Experiment (GRACE) consisted of two satellites that detected gravitational changes across the Earth. Also these changes could be presented as gravity anomaly temporal variations. The Gravity Recovery and Interior Laboratory (GRAIL) also consisted of two spacecraft orbiting the Moon, which orbited for three years before their deorbit in 2015.

See also

[edit]

References

[edit]
  1. ^ NASA/JPL/University of Texas Center for Space Research. "PIA12146: GRACE Global Gravity Animation". Photojournal. NASA Jet Propulsion Laboratory. Retrieved 30 December 2013.
  2. ^ a b Boynton, Richard (2001). "Precise Measurement of Mass" (PDF). Sawe Paper No. 3147. Arlington, Texas: S.A.W.E., Inc. Archived from the original (PDF) on 27 February 2007. Retrieved 22 December 2023.
  3. ^ Hofmann-Wellenhof, B.; Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer. ISBN 978-3-211-33544-4. § 2.1: "The total force acting on a body at rest on the earth's surface is the resultant of gravitational force and the centrifugal force of the earth's rotation and is called gravity."
  4. ^ Bureau International des Poids et Mesures (1901). "Déclaration relative à l'unité de masse et à la définition du poids; valeur conventionnelle de gn". Comptes Rendus des Séances de la Troisième Conférence· Générale des Poids et Mesures (in French). Paris: Gauthier-Villars. p. 68. Le nombre adopté dans le Service international des Poids et Mesures pour la valeur de l'accélération normale de la pesanteur est 980,665 cm/sec2, nombre sanctionné déjà par quelques législations. Déclaration relative à l'unité de masse et à la définition du poids; valeur conventionnelle de gn.
  5. ^ Moritz, Helmut (2000). "Geodetic Reference System 1980". Journal of Geodesy. 74 (1): 128–133. doi:10.1007/s001900050278. S2CID 195290884. Retrieved 2025-08-06. γe = 9.780 326 7715 m/s2 normal gravity at equator
  6. ^ Hirt, Christian; Claessens, Sten; Fecher, Thomas; Kuhn, Michael; Pail, Roland; Rexer, Moritz (August 28, 2013). "New ultrahigh-resolution picture of Earth's gravity field". Geophysical Research Letters. 40 (16): 4279–4283. Bibcode:2013GeoRL..40.4279H. doi:10.1002/grl.50838. hdl:20.500.11937/46786. S2CID 54867946.
  7. ^ "Wolfram|Alpha Gravity in Kuala Lumpur", Wolfram Alpha, accessed November 2020
  8. ^ Terry Quinn (2011). From Artefacts to Atoms: The BIPM and the Search for Ultimate Measurement Standards. Oxford University Press. p. 127. ISBN 978-0-19-530786-3.
  9. ^ Resolution of the 3rd CGPM (1901), page 70 (in cm/s2). BIPM – Resolution of the 3rd CGPM
  10. ^ "Curious About Astronomy?". Cornell University. Archived from the original on 28 July 2013. Retrieved 22 December 2023.
  11. ^ "I feel 'lighter' when up a mountain but am I?", National Physical Laboratory FAQ
  12. ^ "The G's in the Machine" Archived 2025-08-06 at the Wayback Machine, NASA, see "Editor's note #2"
  13. ^ a b A. M. Dziewonski, D. L. Anderson (1981). "Preliminary reference Earth model" (PDF). Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI...25..297D. doi:10.1016/0031-9201(81)90046-7. ISSN 0031-9201.
  14. ^ Tipler, Paul A. (1999). Physics for scientists and engineers (4th ed.). New York: W.H. Freeman/Worth Publishers. pp. 336–337. ISBN 9781572594913.
  15. ^ Weinberg, Steven (1972). Gravitation and cosmology. John Wiley & Sons. ISBN 9780471925675.
  16. ^ Watts, A. B.; Daly, S. F. (May 1981). "Long wavelength gravity and topography anomalies". Annual Review of Earth and Planetary Sciences. 9: 415–418. Bibcode:1981AREPS...9..415W. doi:10.1146/annurev.ea.09.050181.002215.
  17. ^ Gravitational Fields Widget as of Oct 25th, 2012WolframAlpha
  18. ^ T.M. Yarwood and F. Castle, Physical and Mathematical Tables, revised edition, Macmillan and Co LTD, London and Basingstoke, Printed in Great Britain by The University Press, Glasgow, 1970, pp. 22 & 23.
  19. ^ International Gravity formula Archived 2025-08-06 at the Wayback Machine
  20. ^ a b "Department of Defense World Geodetic System 1984 – Its Definition and Relationships with Local Geodetic Systems,NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1" (PDF). Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  21. ^ "Gravitation". www.ncert.nic. Retrieved 2025-08-06.
  22. ^ Meyer, Ulrich; Sosnica, Krzysztof; Arnold, Daniel; Dahle, Christoph; Thaller, Daniela; Dach, Rolf; J?ggi, Adrian (22 April 2019). "SLR, GRACE and Swarm Gravity Field Determination and Combination". Remote Sensing. 11 (8): 956. Bibcode:2019RemS...11..956M. doi:10.3390/rs11080956. hdl:10281/240694.
  23. ^ Tapley, Byron D.; Watkins, Michael M.; Flechtner, Frank; Reigber, Christoph; Bettadpur, Srinivas; Rodell, Matthew; Sasgen, Ingo; Famiglietti, James S.; Landerer, Felix W.; Chambers, Don P.; Reager, John T.; Gardner, Alex S.; Save, Himanshu; Ivins, Erik R.; Swenson, Sean C.; Boening, Carmen; Dahle, Christoph; Wiese, David N.; Dobslaw, Henryk; Tamisiea, Mark E.; Velicogna, Isabella (May 2019). "Contributions of GRACE to understanding climate change". Nature Climate Change. 9 (5): 358–369. Bibcode:2019NatCC...9..358T. doi:10.1038/s41558-019-0456-2. PMC 6750016. PMID 31534490.
  24. ^ So?nica, Krzysztof; J?ggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015). "Time variable Earth's gravity field from SLR satellites". Journal of Geodesy. 89 (10): 945–960. Bibcode:2015JGeod..89..945S. doi:10.1007/s00190-015-0825-1.
[edit]
冷敷眼睛有什么好处 为什么会有痛经 冷暴力是什么意思 吃什么可以化掉息肉 双子后面是什么星座
尼维达手表什么档次 什么是水解奶粉 考研要考什么 神经内科主要看什么病 推特为什么注册不了
腿上出汗是什么原因 相依相偎是什么意思 1978年属马五行属什么 什么笔记本电脑好 泡泡纱是什么面料
口腔义齿是什么 经常肚子疼拉肚子是什么原因 60min是什么意思 hi是什么意思 晚上六点是什么时辰
磁力链接是什么hcv7jop9ns7r.cn 赘疣是什么意思hcv9jop2ns8r.cn 2月4号是什么星座hcv9jop6ns1r.cn 疝气吃什么药效果好hcv7jop6ns4r.cn 眼睛疼用什么药hcv8jop5ns9r.cn
禾加比读什么hcv9jop3ns4r.cn 什么是跨境电商hcv9jop8ns1r.cn 喝什么饮料对身体好hcv8jop1ns6r.cn 25度穿什么衣服合适hcv9jop8ns1r.cn 公卿是什么意思hcv9jop2ns0r.cn
鸽子咕咕叫是什么意思dajiketang.com 耳朵流血是什么原因hcv8jop5ns3r.cn 鱼露是什么味道hcv8jop6ns5r.cn 肺部肿瘤吃什么药hcv8jop6ns2r.cn 力不从心的意思是什么hcv8jop0ns9r.cn
辛弃疾字什么hcv9jop5ns8r.cn 总是掉头发是什么原因hcv9jop7ns0r.cn 吃茴香有什么好处和坏处hcv9jop1ns2r.cn 单招是什么学历hcv8jop8ns2r.cn ada医学上是什么意思creativexi.com
百度