什么颜色加什么颜色等于蓝色| 眼皮跳挂什么科| 白皮书什么意思| 商标r是什么意思| 五是什么生肖| 梦到自己被蛇咬是什么意思| 系带断裂有什么影响吗| 慢性盆腔炎吃什么药| 毛血旺是什么菜| 清真不能吃什么| 嘴歪是什么引起的| 尿带血是什么原因| 一吃东西就牙疼是什么原因引起的| 成吉思汗姓什么| 公主和郡主有什么区别| 木糖醇是什么东西| 智商税什么意思| 卧推80公斤什么水平| 腿凉是什么原因引起的| 教育是什么意思| 山东简称为什么是鲁不是齐| 婴儿黄疸高有什么影响| 茄子什么人不能吃| 乙肝表面抗原阴性是什么意思| 糖尿病什么原因引起的| 舌头紫色是什么原因| 谷草转氨酶偏低是什么意思| 女生的阴道长什么样| 早上打嗝是什么原因呢| 腰椎退行性变什么意思| 媚是什么意思| sunny是什么意思| 发飙是什么意思| 膝盖小腿酸软无力是什么原因| cg什么意思| 左卡尼汀口服溶液主要治疗什么| 清洁度2度是什么意思| 梦见火烧房子是什么预兆| 偏头疼挂什么科室| 旦辞爷娘去的旦是什么意思| cpi指数上涨意味着什么| 脉压是什么| 杏仁有什么作用和功效| 堤防是什么意思| 女人梦见鬼是什么征兆| 甲功五项查的是什么| 什么人不适合去高原| 乳酸脱氢酶是什么| 呼吸胸口疼是什么原因| 什么是动脉硬化| 红玛瑙适合什么人戴| 什么样的人容易垂体瘤| 气滞吃什么中成药| 1988是什么生肖| 凤凰男什么意思| 姓贾的男孩取什么名字好| 排骨炖什么汤好喝| 1m是什么意思| 瞳字五行属什么| 失眠是什么引起的| 支原体感染咳嗽吃什么药| 病例是什么| 青黄不接是什么意思| 百香果是什么季节的水果| 每年什么时候征兵| 08属什么生肖| 头发不干就睡觉有什么危害| 哀恸是什么意思| 君子兰叶子发黄是什么原因| 女生考什么证书最实用| 胆气不足吃什么中成药| 岔气是什么意思| 苏轼是什么朝代的| 未退化胸腺是什么意思| 左膝关节退行性变是什么意思| 头菜是什么菜| 圣是什么生肖| 孩子反复发烧是什么原因| 汗是什么味道| 大牙什么时候换| 鱿鱼不能和什么一起吃| 319是什么意思| 世态炎凉是什么意思| 心电图j点抬高什么意思| 属鼠的贵人是什么属相| 高职是什么学历| 霜花店讲了什么故事| 耳毛念什么| pm什么意思| 胸口长痘是什么原因| 二线用药是什么意思| 原研药是什么意思| 胃疼喝什么能缓解疼痛| 女性阴道长什么样| 出水芙蓉是什么意思| 公务员是什么职业| bb粥指的是什么意思| 星链是什么| 超声科检查什么| 7月出生的是什么星座| 胃酸反流是什么原因造成| 什么人需要做肠镜检查| 得宝松是什么药| 红细胞偏高是什么原因| 四维空间是什么样子| 寮房是什么意思| 一路长虹是什么意思| 拉墨绿色的大便是什么原因| 葡萄糖偏高是什么意思| 身上长红痣是什么原因| 肚脐下面是什么部位| 湿气重的人吃什么好| model是什么意思| 骇人是什么意思| 收到是什么意思| 柠檬有什么作用| 梦想成真是什么意思| 尿路感染为什么会尿血| 补充免疫力吃什么好| 喝柠檬水对身体有什么好处| 幽门螺旋杆菌什么症状| 牛油果是什么季节的水果| 乙肝肝炎表面抗体阳性是什么意思| 胆量是什么意思| 1037年属什么生肖| 难以启齿是什么意思| 想改名字需要什么手续| 肚脐眼上方是什么器官| 我还是什么| 小孩咳嗽流鼻涕吃什么药效果好| 补充蛋白质吃什么最好| 233是什么意思| 健忘是什么意思| 苹果的英文是什么| 小鸭子吃什么食物| 吃秋葵有什么禁忌| 为什么被蚊子咬了会起包| 王字旁的字与什么有关| 一什么傍晚| 肺气肿有什么症状| 吃什么水果补钙| 盐酸氟桂利嗪胶囊治什么病| 丁羟甲苯是什么| 多吃蔬菜对身体有什么好处| 鸿运当头是什么意思| 有人的地方就有江湖什么意思| 怀孕初期会有什么症状| 赵字五行属什么| 油菜是什么菜| 什么时候吃榴莲最好| 养尊处优什么意思| 妈妈的姐妹叫什么| 驱动精灵是干什么用的| 腰痛是什么原因引起的| 排卵的时候有什么症状| 水鸭是什么鸭| 纸可以折什么| 4月9号是什么星座| 津液亏虚是什么意思| 竖心旁的字和什么有关| 治疗幽门螺杆菌用什么药效果最好| 长期失眠看什么科最好| 什么是药食同源| 梦见被追杀是什么预兆| 经常干咳嗽是什么原因| 什么叫多重耐药菌| 扶她是什么意思| 对应是什么意思| 睡觉总醒是什么原因| 塞浦路斯说什么语言| 断奶吃什么| 党参泡酒有什么功效| 狗肉配什么菜好吃| 外痔用什么药| 产妇吃什么最好| 五戒十善是什么| 减肥吃什么东西| 电焊打眼睛用什么眼药水| 愈合是什么意思| 割包皮属于什么科| 梦见孕妇大肚子是什么意思| 夏天什么面料的衣服最舒服| 天上的星星是什么| 一垒二垒三垒全垒打是什么意思| 开涮是什么意思| 盆腔积液用什么药| 黄花鱼是什么鱼| 坐月子吃什么下奶最快最多最有效| 麸子是什么东西| 美尼尔综合征吃什么药| 掉头发去医院挂什么科| 我宣你是什么意思| 化学键是什么| 女人高潮是什么感觉| 女生自慰是什么感觉| 农历8月15是什么节日| 父亲节送什么礼物比较好| 腮腺炎的症状是什么| 2021年是什么年| 怀孕乳头会有什么变化| 阴道出血用什么药| 胆囊结石不宜吃什么| 还替身是什么意思| 拔罐是什么意思| 心绞痛有什么症状| 农历9月21日是什么星座| 甲亢是什么原因引起的| 孕妇熬夜对胎儿有什么影响| 子宫肌瘤吃什么食物好| 血塞通治什么病最好| 7月6号是什么星座| 小妾是什么意思| 什么是湿热| 文爱是什么意思| 额头发黑是什么原因| 神的国和神的义指的是什么| 复查肺结节挂什么科| 平均红细胞体积偏高是什么原因| 自字五行属什么| 生发吃什么食物好| od是什么意思| 虾仁和什么包饺子好吃| 外阴瘙痒用什么药膏擦| 吃火龙果有什么好处| 能耐是什么意思| 不打狂犬疫苗会有什么后果| 神经官能症挂什么科| 什么叫前列腺炎| 心电图t波改变什么意思| 95年的猪是什么命| 什么光| co是什么| 在岸人民币和离岸人民币什么意思| 甲亢能吃什么水果| 方方土是什么字| 县长属于什么级别| 林可霉素主治什么病| 眼睛干涩模糊用什么眼药水| 吃什么水果对皮肤好又美白| 肠胃不好吃什么药好| 女人手心热吃什么药好| hp是什么意思| 清汤寡水是什么意思| 早上7点多是什么时辰| 喘是什么原因造成的| 鸡飞狗跳是什么生肖| 难怪是什么意思| 芪明颗粒主治什么病| 神疲乏力是什么症状| 寻常疣用什么药膏除根| 胃溃疡不能吃什么食物| 日本浪人是什么意思| 痛风打什么针| 道心是什么意思| 科技皮是什么皮| 吃黄豆有什么好处| cv是什么| 绿色加蓝色是什么颜色| 手抖是什么情况| 省检察长什么级别| 2019年是什么生肖| 右下腹是什么器官| 祖马龙是什么档次| 排卵试纸阴性是什么意思| 百度Jump to content

德国设计师精作 HH-43采用交叉式双旋翼

From Wikipedia, the free encyclopedia
(Redirected from Gravity formula)
百度 3月23日,记者了解到,海南目前还没有公益遗嘱库,每年公证遗嘱数量约3000件,很多老人选择在公证处办理公证遗嘱。

In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of Earth's gravity, on or near its surface, by means of a mathematical model. The most common theoretical model is a rotating Earth ellipsoid of revolution (i.e., a spheroid).

Other representations of gravity can be used in the study and analysis of other bodies, such as asteroids. Widely used representations of a gravity field in the context of geodesy include spherical harmonics, mascon models, and polyhedral gravity representations.[1]

Principles

[edit]

The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as:[2]

9.80665 m/s2 (32.1740 ft/s2)

based upon data from World Geodetic System 1984 (WGS-84), where is understood to be pointing 'down' in the local frame of reference.

If it is desirable to model an object's weight on Earth as a function of latitude, one could use the following:[2]:?41?

where

  • = 9.832 m/s2 (32.26 ft/s2)
  • = 9.806 m/s2 (32.17 ft/s2)
  • = 9.780 m/s2 (32.09 ft/s2)
  • = latitude, between ?90° and +90°

Neither of these accounts for changes in gravity with changes in altitude, but the model with the cosine function does take into account the centrifugal relief that is produced by the rotation of the Earth. On the rotating sphere, the sum of the force of the gravitational field and the centrifugal force yields an angular deviation of approximately

(in radians) between the direction of the gravitational field and the direction measured by a plumb line; the plumb line appears to point southwards on the northern hemisphere and northwards on the southern hemisphere. rad/s is the diurnal angular speed of the Earth axis, and km the radius of the reference sphere, and the distance of the point on the Earth crust to the Earth axis. [3]

For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being unaffected by the rotation. So the rotational component of change due to latitude (0.35%) is about twice as significant as the mass attraction change due to latitude (0.18%), but both reduce strength of gravity at the equator as compared to gravity at the poles.

Note that for satellites, orbits are decoupled from the rotation of the Earth so the orbital period is not necessarily one day, but also that errors can accumulate over multiple orbits so that accuracy is important. For such problems, the rotation of the Earth would be immaterial unless variations with longitude are modeled. Also, the variation in gravity with altitude becomes important, especially for highly elliptical orbits.

The Earth Gravitational Model 1996 (EGM96) contains 130,676 coefficients that refine the model of the Earth's gravitational field.[2]:?40? The most significant correction term is about two orders of magnitude more significant than the next largest term.[2]:?40? That coefficient is referred to as the term, and accounts for the flattening of the poles, or the oblateness, of the Earth. (A shape elongated on its axis of symmetry, like an American football, would be called prolate.) A gravitational potential function can be written for the change in potential energy for a unit mass that is brought from infinity into proximity to the Earth. Taking partial derivatives of that function with respect to a coordinate system will then resolve the directional components of the gravitational acceleration vector, as a function of location. The component due to the Earth's rotation can then be included, if appropriate, based on a sidereal day relative to the stars (≈366.24 days/year) rather than on a solar day (≈365.24 days/year). That component is perpendicular to the axis of rotation rather than to the surface of the Earth.

A similar model adjusted for the geometry and gravitational field for Mars can be found in publication NASA SP-8010.[4]

The barycentric gravitational acceleration at a point in space is given by:

where:

M is the mass of the attracting object, is the unit vector from center-of-mass of the attracting object to the center-of-mass of the object being accelerated, r is the distance between the two objects, and G is the gravitational constant.

When this calculation is done for objects on the surface of the Earth, or aircraft that rotate with the Earth, one has to account for the fact that the Earth is rotating and the centrifugal acceleration has to be subtracted from this. For example, the equation above gives the acceleration at 9.820 m/s2, when GM = 3.986 × 1014 m3/s2, and R = 6.371 × 106 m. The centripetal radius is r = R cos(φ), and the centripetal time unit is approximately (day / 2π), reduces this, for r = 5 × 106 metres, to 9.79379 m/s2, which is closer to the observed value. [citation needed]

Basic formulas

[edit]

Various, successively more refined, formulas for computing the theoretical gravity are referred to as the International Gravity Formula, the first of which was proposed in 1930 by the International Association of Geodesy. The general shape of that formula is:

in which g(φ) is the gravity as a function of the geographic latitude φ of the position whose gravity is to be determined, denotes the gravity at the equator (as determined by measurement), and the coefficients A and B are parameters that must be selected to produce a good global fit to true gravity.[5]

Using the values of the GRS80 reference system, a commonly used specific instantiation of the formula above is given by:

[5]

Using the appropriate double-angle formula in combination with the Pythagorean identity, this can be rewritten in the equivalent forms

Up to the 1960s, formulas based on the Hayford ellipsoid (1924) and of the famous German geodesist Helmert (1906) were often used.[citation needed] The difference between the semi-major axis (equatorial radius) of the Hayford ellipsoid and that of the modern WGS84 ellipsoid is 251 m; for Helmert's ellipsoid it is only 63 m.

Somigliana equation

[edit]

A more recent theoretical formula for gravity as a function of latitude is the International Gravity Formula 1980 (IGF80), also based on the GRS80 ellipsoid but now using the Somigliana equation (after Carlo Somigliana (1860–1955)[6]):

where,[7]

  • (formula constant);
  • is the defined gravity at the equator and poles, respectively;
  • are the equatorial and polar semi-axes, respectively;
  • is the spheroid's squared eccentricity;

providing,

[5]

A later refinement, based on the WGS84 ellipsoid, is the WGS (World Geodetic System) 1984 Ellipsoidal Gravity Formula:[7]

(where = 9.8321849378 ms?2)

The difference with IGF80 is insignificant when used for geophysical purposes,[5] but may be significant for other uses.

Further details

[edit]

For the normal gravity of the sea level ellipsoid, i.e., elevation h = 0, this formula by Somigliana (1929) applies:

with

  • = Normal gravity at Equator
  • = Normal gravity at poles
  • a = semi-major axis (Equator radius)
  • b = semi-minor axis (pole radius)
  • = latitude

Due to numerical issues, the formula is simplified to this:

with

  • (e is the eccentricity)


For the Geodetic Reference System 1980 (GRS 80) the parameters are set to these values:

Approximation formula from series expansions

[edit]

The Somigliana formula was approximated through different series expansions, following this scheme:

International gravity formula 1930

[edit]

The normal gravity formula by Gino Cassinis was determined in 1930 by International Union of Geodesy and Geophysics as international gravity formula along with Hayford ellipsoid. The parameters are:

In the course of time the values were improved again with newer knowledge and more exact measurement methods.

Harold Jeffreys improved the values in 1948 at:

International gravity formula 1967

[edit]

The normal gravity formula of Geodetic Reference System 1967 is defined with the values:

International gravity formula 1980

[edit]

From the parameters of GRS 80 comes the classic series expansion:

The accuracy is about ±10?6 m/s2.

With GRS 80 the following series expansion is also introduced:

As such the parameters are:

  • c1 = 5.279 0414·10?3
  • c2 = 2.327 18·10?5
  • c3 = 1.262·10?7
  • c4 = 7·10?10

The accuracy is at about ±10?9 m/s2 exact. When the exactness is not required, the terms at further back can be omitted. But it is recommended to use this finalized formula.

Height dependence

[edit]

Cassinis determined the height dependence, as:

The average rock density ρ is no longer considered.

Since GRS 1967 the dependence on the ellipsoidal elevation h is:

Another expression is:

with the parameters derived from GRS80:

where with :[8]

This adjustment is about right for common heights in aviation; but for heights up to outer space (over ca. 100 kilometers) it is out of range.

WELMEC formula

[edit]

In all German standards offices the free-fall acceleration g is calculated in respect to the average latitude φ and the average height above sea level h with the WELMEC–Formel:

The formula is based on the International gravity formula from 1967.

The scale of free-fall acceleration at a certain place must be determined with precision measurement of several mechanical magnitudes. Weighing scales, the mass of which does measurement because of the weight, relies on the free-fall acceleration, thus for use they must be prepared with different constants in different places of use. Through the concept of so-called gravity zones, which are divided with the use of normal gravity, a weighing scale can be calibrated by the manufacturer before use.[9]

Example

[edit]

Free-fall acceleration in Schweinfurt:

Data:

  • Latitude: 50° 3′ 24″ = 50.0567°
  • Height above sea level: 229.7 m
  • Density of the rock plates: ca. 2.6 g/cm3
  • Measured free-fall acceleration: g = 9.8100 ± 0.0001 m/s2

Free-fall acceleration, calculated through normal gravity formulas:

  • Cassinis: g = 9.81038 m/s2
  • Jeffreys: g = 9.81027 m/s2
  • WELMEC: g = 9.81004 m/s2

See also

[edit]

References

[edit]
  1. ^ Izzo, Dario; Gómez, Pablo (2025-08-07). "Geodesy of irregular small bodies via neural density fields". Communications Engineering. 1 (1): 48. arXiv:2105.13031. Bibcode:2022CmEng...1...48I. doi:10.1038/s44172-022-00050-3. ISSN 2731-3395. PMC 10956048.
  2. ^ a b c d Brian L. Stevens; Frank L. Lewis (2003). Aircraft Control And Simulation, 2nd Ed. Hoboken, New Jersey: John Wiley & Sons, Inc. ISBN 978-0-471-37145-8.
  3. ^ de Icaza-Herrera, M.; Castano, V. M. (2011). "Generalized Lagrangian of the parametric Foucault pendulum with dissipative forces". Acta Mech. 218 (1–2): 45–64. doi:10.1007/s00707-010-0392-8.
  4. ^ Richard B. Noll; Michael B. McElroy (1974), "Models of Mars' Atmosphere [1974]", Space Vehicle Design Criteria (Environment), Greenbelt, Maryland: NASA Goddard Space Flight Center, Bibcode:1974svdc.rept......, SP-8010.
  5. ^ a b c d William J. Hinze; Ralph R. B. von Frese; Afif H. Saad (2013). Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press. p. 130. ISBN 978-1-107-32819-8.
  6. ^ Biografie Somiglianas Archived 2025-08-07 at the Wayback Machine (ital.)
  7. ^ a b Department of Defense World Geodetic System 1984 — Its Definition and Relationships with Local Geodetic Systems,NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1
  8. ^ Xiong Li; Hans-Jürgen G?tzez. "Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics" (PDF). Retrieved 29 March 2024.{{cite web}}: CS1 maint: multiple names: authors list (link) 988kB
  9. ^ Roman Schwartz, Andreas Lindau. "Das europ?ische Gravitationszonenkonzept nach WELMEC" (PDF) (in German). Retrieved 26 February 2011. 700kB

Further reading

[edit]
[edit]
霸王别姬是什么菜 什么的辨认 design是什么牌子 met是什么氨基酸 总蛋白偏高有什么危害
放风是什么意思 漫展是什么 卢靖姗是什么混血 躯体化什么意思 什么是有氧运动包括哪些
448是什么意思 11月2号是什么星座 竹子可以做什么玩具 梦见拔花生是什么预兆 白玫瑰代表什么意思
百分位是什么意思 紧张是什么意思 哺乳期吃避孕药对孩子有什么影响 家慈是什么意思 相交是什么意思
狗肉和什么食物相克fenrenren.com 什么的鼻子填词形容词wzqsfys.com 哈达是什么意思hcv8jop9ns3r.cn 炮烙之刑是什么意思zhongyiyatai.com 梦见喜欢的人代表什么hcv7jop7ns0r.cn
甲亢是什么hcv9jop5ns2r.cn 胃痉挛是什么hcv8jop5ns6r.cn 什么是闰年什么是平年hcv9jop2ns9r.cn 为什么喝茶会睡不着hcv9jop4ns3r.cn 拉肚子拉稀是什么原因hcv9jop2ns1r.cn
长期低血糖对人体有什么危害hcv8jop7ns6r.cn 心跳和心率有什么区别hcv7jop7ns1r.cn 纯净水和矿泉水有什么区别hcv7jop9ns9r.cn 什么叫有机蔬菜hcv7jop9ns5r.cn 依稀是什么意思hcv9jop0ns2r.cn
前列腺是什么东西hcv8jop4ns9r.cn 10.21是什么星座hcv8jop9ns0r.cn 温州什么最出名hcv8jop0ns2r.cn 闻名的闻什么意思hcv7jop5ns1r.cn 女生吃什么补气血hcv8jop0ns2r.cn
百度