藏青和藏蓝有什么区别| 蛇鼠一窝指什么生肖| 2019是什么生肖| 狐臭手术挂什么科室| 西洋参泡水喝有什么好处| 2.25是什么星座| 脑供血不足什么症状| 布洛芬有什么副作用| 吃什么指甲长得快| 热菜是什么梗| 秋天有什么水果| 心肌劳损的症状是什么| 一天当中什么时候最热| 留守儿童什么意思| tj是什么意思| 屁股长痘痘是什么原因| 披什么散什么| 兼职是什么| 失调是什么意思| 小米手机最新款是什么型号| 苦荞茶有什么功效| 胖大海是什么东西| 为什么困但是睡不着| 迅雷不及掩耳之势是什么意思| 缺钾是什么原因引起| pmi是什么| 男人吃海参有什么好处| 肝火旺是什么症状| 一直倒霉预示着什么| 什么云见日| hpmc是什么| 闭口长什么样子| 中国一词最早出现在什么时候| 手指尖麻木是什么原因| 7岁属什么| 解脲支原体阳性是什么意思| 缩影是什么意思| 4月10号什么星座| 雷锋属什么生肖| 缘是什么生肖| 婧是什么意思| 土字生肖有钱收是什么生肖| anode是什么意思| 嘴角流口水是什么原因| 傻白甜是什么意思| 2017年是属什么年| 团县委是什么单位| 世界的尽头是什么| 2015属什么| 什么样的人容易垂体瘤| 入职体检前要注意什么| 狗狗气喘吃什么药| 疱疹性咽峡炎吃什么食物| 前列腺增大伴钙化是什么意思| 肤专家抑菌软膏主要治什么| 腔梗和脑梗有什么区别| 喝茶叶茶有什么好处| 强直性脊柱炎吃什么药| 古井贡酒是什么香型| 产检建档需要什么资料| 荔枝可以做什么| 为什么手指会脱皮| 小肠镜什么情况下需要做| 碱性磷酸酶高是什么意思| 菠萝和什么不能一起吃| 小猫的胡须有什么作用| 坏垣是什么意思| 直肠炎吃什么药效果好| 感冒流黄鼻涕吃什么药| 什么是肠漏| 下头是什么意思| 王八是什么字| 乌龟最喜欢吃什么| 劳热是什么意思| 邯郸学步的寓意是什么| 公子是你吗是什么歌| 牛头不对马嘴是什么意思| 胆量是什么意思| 滑胎是什么意思| 眼白发黄是什么原因| 牛气冲天是什么生肖| 松板肉是什么肉| 包虫病是什么症状| 房产证改名字需要什么手续| 避孕套什么牌子好| 送礼送什么比较好| 网球肘用什么膏药效果好| 干红是什么意思| 1983年属什么生肖| mr是什么检查项目| 加湿器有什么作用| 上午八点是什么时辰| 什么胃病需要做手术| 月经量少吃什么好| 104岁属什么生肖| 维生素c是什么| 豆浆和豆奶有什么区别| 床上为什么会有跳蚤| 寒碜是什么意思| 精子是什么| 什么是白虎| 什么是规培| 梦到前夫什么意思| 七月五号是什么星座| 小径是什么意思| 常吃火龙果有什么好处| 吃大虾不能吃什么| 一直咳嗽是什么原因| 哥哥的孩子叫什么| 中气不足是什么意思| 紫藤花什么时候开花| 男生早上为什么会晨勃| 户口迁移需要什么手续| 头出汗多至头发湿透是什么原因| 手关节疼痛挂什么科| 囊是什么结构| 兔子怕什么| 泌乳素高是什么原因| 明油是什么油| 颈动脉彩超查什么| 夏天什么花会开| 毅力是什么意思| 热疹用什么药膏最好| 乳酸杆菌是什么| 一国两制什么时候提出的| 一个火一个华念什么| 胃不好吃什么| 眼睛模糊吃什么药| 黄色五行属什么| 考试早餐吃什么| 角质增生是什么意思| 养殖什么最赚钱| 满月脸是什么意思| 寒窗是什么意思| 米黄配什么颜色好看| 冰糖和白砂糖有什么区别| 肾结石吃什么| 破相是什么意思| 小便有刺痛感什么原因| 大腿根部痛是什么原因| 回归热是什么病| 吃苹果有什么好处| 谋生是什么意思| 泌乳素高有什么症状表现| 邵字五行属什么| 肠道感染用什么抗生素| 什么是胸推| 什么颜色加什么颜色等于紫色| 手发抖是什么病| 浙大校长什么级别| 第一次查怀孕挂什么科| 梅雨季节是什么时候| 梦到女朋友出轨是什么意思| 手发痒是什么原因| 三焦湿热吃什么中成药| 牙龈肿痛上火吃什么药最好| 木薯粉是什么东西| 节食是什么意思| 天麻有什么作用| 肾结石有什么表现症状| 炒菜放什么调料最好吃| 二氧化硅是什么东西| 青盐是什么盐| 眼带用什么方法消除| 伤口结痂为什么会痒| 满族八大碗都有什么菜| 腹泻拉稀水是什么原因| 白矾是什么东西| 后背疼是什么病的前兆| 鸡血藤有什么作用| 打喷嚏是什么原因引起的| 出水芙蓉是什么意思| 桃李满天下是什么生肖| 嘴巴发苦是什么原因造成的| 怀孕掉头发厉害是什么原因| 胃窦肠化是什么意思| hc是什么意思| 脆生生的什么| 什么水果能马上通便| 海底轮是什么意思| 为什么会突然吐血| 陈皮的作用是什么| 98年出生属什么| 见好就收是什么意思| 空腹打嗝是什么原因引起的| 看中医挂什么科| 孩子疱疹性咽峡炎吃什么药| 吃什么补孕酮最快| 妈妈咪呀是什么意思| 伯伯的儿子叫什么| 屁股生疮是什么原因| 高烧不退有什么好办法| cf是什么| 男大三后面一句是什么| 什么人一年只工作一天脑筋急转弯| 感触什么意思| 复试一般会问什么问题| 血脂高是什么原因引起| 喜欢紫色的女人是什么性格| 主治医生是什么级别| 淋巴结肿大用什么药| 什么叫韵母| 春的五行属性是什么| 血压高吃什么菜和水果能降血压| 一喝酒就脸红是什么原因| 外痔疮有什么症状| 宋朝之前是什么朝代| msms筛查是什么意思| 间质瘤是什么性质的瘤| 喝什么茶对肾好| 梦见蜘蛛网是什么意思| 下午5点半是什么时辰| 北海龙王叫什么| 雾里看花是什么意思| 甲醛什么味道| pa什么意思| 男人肝火旺吃什么药| 主动脉硬化吃什么药好| 丝瓜水敷脸有什么作用| 甘薯是什么| 硬笔是什么笔| 糖尿病什么原因引起的| 电器火灾用什么灭火器| 高筋面粉可以做什么| 手机cpu是什么| 脉弦是什么意思和症状| 岳绮罗是什么来历| 今天穿什么衣服合适| 百合花什么时候种植| 红豆为什么代表相思| 甘油三酯是什么意思| 三角梅什么时候开花| 管状腺瘤是什么意思| 今天什么属相| 7朵玫瑰花代表什么意思| 月经结束一周后又出血是什么原因| 猫的眼睛为什么会发光| 牡蛎是什么东西| 外阴瘙痒擦什么药| 富贵包去医院挂什么科| 左上腹疼是什么原因| 行运是什么意思| 流产是什么样子的| 刘邦和项羽是什么关系| 剂型是什么意思| 牙龈上火肿痛吃什么药| 尿崩症是什么意思| 做什么生意挣钱| 霍山黄芽属于什么茶| 扇子骨是什么肉| 血糖低吃什么补得最快| 为什么孩子要跟爸爸姓| 人工流产后可以吃什么| 面粉可以做什么好吃的| 安赛蜜是什么| 何去何从什么意思| 前列腺液和精液有什么区别| 哺乳期牙龈肿痛可以吃什么药| 县人武部政委什么级别| 孔子是什么家| 身体发热是什么原因| 连铁是什么器官| 1984年什么命| 老是想拉尿是什么原因| 百度Jump to content

“甜得像初恋”!4月20日镇宁27个樱桃园开摘

From Wikipedia, the free encyclopedia
百度 不过苹果iPhone屏幕却因为尺寸不够大,几乎用不到手写笔。

Reasoning language models (RLMs) are large language models that are trained further to solve tasks that take several steps of reasoning.[1] They tend to do better on logic, math, and programming tasks than standard LLMs, can revisit and revise earlier steps, and make use of extra computation while answering as another way to scale performance, alongside the number of training examples, parameters, and training compute.[2]

History

[edit]

2024

[edit]

In September 2024, OpenAI released o1-preview, an LLM with enhanced reasoning.[3] The full version, o1, followed in December 2024. OpenAI also began sharing results on its successor, o3.[4][5][6]

The development of reasoning LLMs has illustrated what Rich Sutton called the "bitter lesson": that scaling compute often outperforms methods that rely on specific human insights.[7] For example, the Generative AI Research Lab (GAIR) explored complex methods such as tree search and reinforcement learning to replicate o1's capabilities. In their "o1 Replication Journey" papers they reported that knowledge distillation (training a smaller model to imitate o1's outputs) worked surprisingly well. This highlighted the effectiveness of distillation in this context.[8][9]

Alibaba released reasoning versions of its Qwen LLMs in November 2024.[10] In December 2024, the team introduced QvQ-72B-Preview, an experimental visual reasoning model.[11]

In December 2024, Google introduced Deep Research in Gemini,[12] a feature that runs multi-step research tasks.[13]

On December 16, 2024, an experiment with a Llama 3B model showed that by scaling test-time compute, a relatively small model could outperform a much larger Llama 70B model on challenging reasoning tasks. This suggested that better inference strategies can unlock useful reasoning capabilities even in small models.[14][15]

2025

[edit]

In January 2025, DeepSeek released R1, a model with comparable performance to o1 at lower cost. The release demonstrated the effectiveness of Group Relative Policy Optimization (GRPO).[16][17] On January 25, 2025, DeepSeek added a feature to DeepSeek R1 that lets the model search the web while it reasons, making it easier to combine retrieval with reasoning.[18] OpenAI subsequently released o3-mini, followed by Deep Research based on o3.[19] The effectiveness of distillation was shown again by s1-32B, which reached strong performance with budget forcing and scaling methods.[20][9]

On February 2, 2025, OpenAI released Deep Research,[21] a tool that integrates reasoning and web search in one workflow so users can run complex research that needs several steps and sources. It is based on o3 and can take from 5 to 30 minutes to generate comprehensive reports.[21]

Supervised finetuning

[edit]

A large language model (LLM) can be fine-tuned on a dataset of reasoning tasks paired with example solutions and step-by-step (reasoning) traces. The fine-tuned model can then produce its own reasoning traces for new problems.[22][23]

Because human-written traces are costly to collect, researchers have proposed ways to build such datasets automatically. In rejection sampling finetuning (RFT), new reasoning traces are gathered in a loop:[24]

  1. Sample a task prompt.
  2. Generate many reasoning traces for the prompt.
  3. Use a verifier to remove reasoning traces with a wrong final answer, and optionally remove duplicates

Reinforcement learning

[edit]

A pretrained language model can be further trained with RL. In the RL formalism, a generative language model is a policy . A task prompt is an environmental state , and the model's response is an action . The probability that the model responds with is .

Training a reasoning language model with RL means constructing a reward model to guide the RL process. Intuitively, the reward says how good a response is for a prompt. For a reasoning task, the reward is high if the response solves the task and low if it does not.

A response may be broken-down into multiple steps, written .

Most recent systems use policy-gradient methods such as Proximal Policy Optimization (PPO) because PPO constrains each policy update with a clipped objective, which stabilises training for very large policies.[25]

Outcome reward model

[edit]

An outcome reward model, or outcome-supervised RM (ORM),[22] gives the reward for a step based on the final answer: . Such models are often called "verifiers".

For tasks with answers that are easy to verify, such as math word problems, the outcome reward can be binary: 1 if the final answer is correct, 0 otherwise.[22] If automatic verification is hard, humans can label answers as correct or not, and those labels can be used to finetune a base model that predicts the human label.[23] For tasks like creative writing, where quality is not simply true or false, one can train a reward model on human ranked preference data, as in reinforcement learning from human feedback.[26] A base model can also be fine-tuned to predict, from a partial thinking trace , whether the final answer will be correct, and this prediction can serve as a binary reward.[22]

The ORM is usually trained with logistic regression, i.e. by minimizing cross-entropy loss.[27]

Given a PRM, an ORM can be constructed by multiplying the total process reward during the reasoning trace,[26] by taking the minimum,[27] or by other ways of aggregating process rewards. DeepSeek used a simple ORM to train the R1 model.[17]

Process reward model

[edit]

A process reward model, or process-supervised RM (PRM),[22] gives the reward for a step based only on the steps so far: .

Given a partial thinking trace , a human can judge whether the steps so far are correct, without looking at the final answer. This yields a binary reward. Because human labels are costly, a base model can be fine-tuned to predict them.[22] The PRM is usually trained with logistic regression on the human labels, i.e. by minimizing the cross-entropy loss between true and predicted labels.[27]

As an example, a 2023 OpenAI paper collected 800K process labels for 75K thinking traces. A labeler saw a trace and marked each step as "positive" if it moved toward a solution, "neutral" if it was not wrong but did not help, and "negative" if it was a mistake. After the first "negative" label, the labeler stopped on that trace and moved to another. The authors argued that labeling up to the first error was enough to train a capable PRM, even though labeling later steps could give richer signals.[26][28]

To avoid human labels, researchers have proposed methods to create PRM without human labels on the processes. Inspired by Monte Carlo tree search (MCTS), the Math-Shepherd method samples multiple continuations until the end, starting at each reasoning step , and set the reward at that step to be either in the case of "soft estimation", or in the case of "hard estimation". This creates process rewards from an ORM, which is often easier or cheaper to construct. A PRM can then be trained on these labels.[27] Some work has tried a fully MCTS approach.[29]

One can also use an ORM to implicitly construct a PRM, similar to direct preference optimization.[30]

Guided sampling

[edit]

A trained ORM can be used to pick the best response. The policy generates several responses, and the ORM selects the best one. This implements a simple form of test-time compute scaling ("best-of-N").[23] [31]

A trained PRM can guide reasoning by a greedy tree search: the policy proposes several next steps, the PRM picks one, and the process repeats. This mirrors using an ORM to pick a whole response.[32] Beam search performs better than greedy search.

Lookahead search is another tree search method. The policy proposes several next steps, then makes a short rollout for each. If a solution is found during rollout, the search stops early. Otherwise, the PRM scores each rollout, and the step with the highest score is chosen.[15]

Self-consistency can be combined with an ORM. The model generates multiple answers, and the answers are clustered so that each cluster has the same final answer. The ORM scores each answer, scores in each cluster are summed, and the answer from the highest-scoring cluster is returned.[27]

Benchmarks

[edit]

Reasoning models generally score higher than non-reasoning models on many benchmarks, especially on tasks requiring multi-step reasoning.

Some benchmarks exclude reasoning models because their responses take longer and cost more.[33][34][35][36]

Humanity's Last Exam

[edit]

The HLE benchmark tests expert-level reasoning across mathematics, humanities, and the natural sciences, and shows large performance gaps between models. State-of-the-art reasoning models score low on HLE, leaving room to improve. For example, the full reasoning model o3 reached 26.6%,[21] while the lighter o3-mini-high (on text-only questions) reached 13%.[37]

AIME

[edit]

On the American Invitational Mathematics Examination (AIME), a difficult math competition, non-reasoning models usually solve under 30% of problems. Models that use reasoning methods score between 50% and 80%.[2][17][20] While OpenAI's o1 maintained or slightly improved its accuracy from reported 2024 results to 2025 AIME results, o3-mini (high) reached a higher accuracy (80%) at a much lower cost (about 12 times cheaper).[38]

o3-mini performance

[edit]

According to OpenAI's January 2025 report on o3-mini, adjusting "reasoning effort" significantly affects performance, especially for STEM tasks. Moving from low to high reasoning effort raises accuracy on AIME 2024, GPQA Diamond, and Codeforces, typically by 10–30%. With high effort, o3-mini (high) achieved 87.3% on AIME (different from the MathArena AIME benchmark), 79.7% on GPQA Diamond, 2130 Elo on Codeforces, and 49.3 on SWE-bench Verified.[38]

Drawbacks

[edit]

Computational cost

[edit]

Reasoning models often need far more compute while answering than non-reasoning models. On AIME, they were 10 to 74 times more expensive[26] than non-reasoning counterparts.

Generation time

[edit]

Reasoning increases response time, with current models taking from a few seconds to several minutes to answer. As depth of reasoning grows, future models may need even longer.

Models

[edit]
  • R1 (based on V3)
  • R1-Lite-Preview (test version based on V2.5)
  • QvQ-72B-Preview — an experimental visual reasoning model launched on December 24, 2024, which integrates image understanding with verbal chain-of-thought reasoning.
  • QwQ-32B-Preview — an experimental text-based reasoning model released in late November 2024 that emphasizes complex, step-by-step analysis.
  • Magistral (medium & small)
  • OlympicCoder-7B & 32B, as part of reproducing the R1 training openly (Open R1 project).[39][40]

See also

[edit]

References

[edit]
  1. ^ Besta, Maciej; Barth, Julia; Schreiber, Eric; Kubicek, Ales; Catarino, Afonso; Gerstenberger, Robert; Nyczyk, Piotr; Iff, Patrick; Li, Yueling (2025-08-07). "Reasoning Language Models: A Blueprint". arXiv:2501.11223 [cs.CL].
  2. ^ a b "Learning to reason with LLMs". OpenAI. 2025-08-07. Retrieved 2025-08-07.
  3. ^ Edwards, Benj (2025-08-07). "OpenAI's new "reasoning" AI models are here: o1-preview and o1-mini". Ars Technica. Retrieved 2025-08-07.
  4. ^ "OpenAI o1 System Card" (PDF). OpenAI. 2025-08-07. Retrieved 2025-08-07.
  5. ^ Robison, Kylie (2025-08-07). "OpenAI launches ChatGPT Pro, a $200/month plan with unlimited access to o1, GPT-4o, and more". The Verge. Retrieved 2025-08-07.
  6. ^ Singh, Jaspreet (2025-08-07). "OpenAI unveils 'o3' model, touting advances in reasoning". Reuters. Retrieved 2025-08-07.
  7. ^ Sutton, Richard S. "The Bitter Lesson". Incomplete Ideas. Retrieved 2025-08-07.
  8. ^ Huang, Zhen; Zou, Haoyang; Li, Xuefeng; Liu, Yixiu; Zheng, Yuxiang; Chern, Ethan; Xia, Shijie; Qin, Yiwei; Yuan, Weizhe (2025-08-07). "O1 Replication Journey — Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?". arXiv:2411.16489 [cs.CL].
  9. ^ a b Zeff, Maxwell (2025-08-07). "Researchers created an open rival to OpenAI's o1 'reasoning' model for under $50". TechCrunch. Retrieved 2025-08-07.
  10. ^ "QwQ-32B-Preview: Reflect Deeply on the Boundaries of the Unknown". Qwen (Alibaba Cloud). 2025-08-07. Retrieved 2025-08-07.
  11. ^ "QVQ: To See the World with Wisdom". Qwen. Alibaba Cloud. 2025-08-07. Retrieved 2025-08-07.
  12. ^ "Try Deep Research and our new experimental model in Gemini, your AI assistant". Google. 2025-08-07. Retrieved 2025-08-07.
  13. ^ Roth, Emma (2025-08-07). "Google built an AI tool that can do research for you". The Verge. Retrieved 2025-08-07.
  14. ^ "Scaling test-time compute". Hugging Face. 2025-08-07. Retrieved 2025-08-07.
  15. ^ a b Snell, Charlie; Lee, Jaehoon; Xu, Kelvin; Kumar, Aviral (2025). "Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters". International Conference on Learning Representations (ICLR 2025). arXiv:2408.03314. Retrieved 2025-08-07.
  16. ^ Orland, Kyle (2025-08-07). "How does DeepSeek R1 really fare against OpenAI's best reasoning models?". Ars Technica. Retrieved 2025-08-07.
  17. ^ a b c DeepSeek-AI; Guo, Daya; Yang, Dejian; Zhang, Haowei; Song, Junxiao; Zhang, Ruoyu; Xu, Runxin; Zhu, Qihao; Ma, Shirong (2025-08-07). "DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning". arXiv:2501.12948 [cs.CL].
  18. ^ DeepSeek 支持“深度思考+联网检索”能力 [DeepSeek adds a search feature supporting simultaneous deep thinking and web search]. People’s Daily Online (in Chinese). 2025-08-07. Retrieved 2025-08-07.
  19. ^ Milmo, Dan (2025-08-07). "OpenAI launches 'deep research' tool that it says can match research analyst". The Guardian. ISSN 0261-3077. Retrieved 2025-08-07.
  20. ^ a b Muennighoff, Niklas; Yang, Zitong; Shi, Weijia; Li, Xiang Lisa; Fei-Fei, Li; Hajishirzi, Hannaneh; Zettlemoyer, Luke; Liang, Percy; Candès, Emmanuel (2025-08-07). "s1: Simple test-time scaling". arXiv:2501.19393 [cs.CL].
  21. ^ a b c "Introducing deep research". OpenAI. 2025-08-07. Retrieved 2025-08-07.
  22. ^ a b c d e f Uesato, Jonathan; Kushman, Nate; Kumar, Ramana; Song, Francis; Siegel, Noah; Wang, Lisa; Creswell, Antonia; Irving, Geoffrey; Higgins, Irina (2025-08-07). "Solving math word problems with process- and outcome-based feedback". arXiv:2211.14275 [cs.LG].
  23. ^ a b c Cobbe, Karl; Kosaraju, Vineet; Bavarian, Mohammad; Chen, Mark; Jun, Heewoo; Kaiser, Lukasz; Plappert, Matthias; Tworek, Jerry; Hilton, Jacob (2025-08-07). "Training Verifiers to Solve Math Word Problems". arXiv:2110.14168 [cs.LG].
  24. ^ Yuan, Zheng; Yuan, Hongyi; Li, Chengpeng; Dong, Guanting; Lu, Keming; Tan, Chuanqi; Zhou, Chang; Zhou, Jingren (2025-08-07). "Scaling Relationship on Learning Mathematical Reasoning with Large Language Models". arXiv:2308.01825 [cs.CL].
  25. ^ "Aligning language models to follow instructions". OpenAI Blog. 2025-08-07. Retrieved 2025-08-07.
  26. ^ a b c d Lightman, Hunter; Kosaraju, Vineet; Burda, Yura; Edwards, Harri; Baker, Bowen; Lee, Teddy; Leike, Jan; Schulman, John; Sutskever, Ilya (2024). "Let's Verify Step by Step". International Conference on Learning Representations (ICLR 2024). arXiv:2305.20050. Retrieved 2025-08-07.
  27. ^ a b c d e Wang, Peiyi; Li, Lei; Shao, Zhihong; Xu, Runxin; Dai, Damai; Li, Yifei; Chen, Deli; Wu, Yu; Sui, Zhifang (August 2024). Ku, Lun-Wei; Martins, Andre; Srikumar, Vivek (eds.). "Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations". Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Bangkok, Thailand: Association for Computational Linguistics: 9426–9439. arXiv:2312.08935. doi:10.18653/v1/2024.acl-long.510.
  28. ^ "prm800k". GitHub. OpenAI. 2025-08-07. Retrieved 2025-08-07.
  29. ^ Chen, Guoxin; Liao, Minpeng; Li, Chengxi; Fan, Kai (2025-08-07). "AlphaMath Almost Zero: Process Supervision without Process". arXiv:2405.03553 [cs.LG].
  30. ^ Yuan, Lifan; Li, Wendi; Chen, Huayu; Cui, Ganqu; Ding, Ning; Zhang, Kaiyan; Zhou, Bowen; Liu, Zhiyuan; Peng, Hao (2025-08-07). "Free Process Rewards without Process Labels". arXiv:2412.01981 [cs.CL].
  31. ^ Zhang, Di; Wu, Jianbo; Lei, Jingdi; Che, Tong; Li, Jiatong; Xie, Tong; Huang, Xiaoshui; Zhang, Shufei; Pavone, Marco (2025-08-07). "LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning". arXiv:2410.02884 [cs.CL].
  32. ^ Ma, Qianli; Zhou, Haotian; Liu, Tingkai; Yuan, Jianbo; Liu, Pengfei; You, Yang; Yang, Hongxia (2025-08-07). "Let's reward step by step: Step-Level reward model as the Navigators for Reasoning". arXiv:2310.10080 [cs.CL].
  33. ^ Huang, Yuting; Zois, Christos; Wang, Yue; Zhang, Yue; Mavromatis, Christos; Zeng, Jiachen; Yin, Shihao; Voulkidis, Antonios; Shepard, Daniel (2025). "Toward Foundation Models for Online Complex Event Detection in CPS-IoT: A Case Study". Proceedings of the 26th International Conference on Information Processing in Sensor Networks (IPSN '25). ACM: 1–6. arXiv:2503.12282. doi:10.1145/3722565.3727198. ISBN 979-8-4007-1608-9. Although we did not evaluate o1 and o3 models … their high cost and inference time make them impractical for online CED, which requires frequent, low-latency API requests.
  34. ^ Hu, Zihao; Wang, Yuqing; Sun, Rui; Lu, Haoran; Gong, Qian; Wang, Jinshuai; Gong, Yunlong; Huang, Yiming; He, Peng (2025-08-07). "Inference-Time Compute: More Faithful? A Research Note". arXiv:2502.09673 [cs.CL]. we were unable to evaluate O1 and R1 …
  35. ^ Chen, Guoliang; Zhu, Zhiyao; Meng, Qinxiang; Liang, Weilin; Ji, Zijie; Liu, Jiangning; Zeng, Jie (2025-08-07). "RealBench: Evaluating LLMs as Verilog Engineers". arXiv:2503.04914 [cs.AI]. For O1-preview, we sample only once due to high cost.
  36. ^ Gupta, Arpit; Schapira, Michael; Gill, Phillipa; Seetharaman, Srinivasan (2025-08-07). "On the Feasibility of Using LLMs to Execute Multistage Network Attacks". arXiv:2501.16466 [cs.CR]. We were unable to evaluate o1 … the public API has a safeguard that prevents o1 from executing attacks.
  37. ^ "Humanity's Last Exam leaderboard". Safe.ai. Center for AI Safety. Retrieved 2025-08-07.
  38. ^ a b "OpenAI o3-mini". OpenAI. 2025-08-07. Retrieved 2025-08-07.
  39. ^ "Open-R1: a fully open reproduction of DeepSeek-R1". Hugging Face. 2025-08-07. Retrieved 2025-08-07.
  40. ^ "OlympicCoder-7B". Hugging Face. 2025-08-07. Retrieved 2025-08-07.
[edit]
  • Fortes, Armando (2025-08-07), atfortes/Awesome-LLM-Reasoning, retrieved 2025-08-07
  • Huang, Jie; Chang, Kevin Chen-Chuan (2025-08-07), Towards Reasoning in Large Language Models: A Survey, arXiv:2212.10403
  • Besta, Maciej; Barth, Julia; Schreiber, Eric; Kubicek, Ales; Catarino, Afonso; Gerstenberger, Robert; Nyczyk, Piotr; Iff, Patrick; Li, Yueling (2025-08-07), Reasoning Language Models: A Blueprint, arXiv:2501.11223
查胃病做什么检查合适 正科级是什么级别 什么于怀 梦见老公回来了是什么征兆 眼睛一直跳是什么原因
擦是什么意思 眉毛痒是什么原因 cdf1是什么意思 互卦是什么意思 体外射精什么意思
夏至是什么生肖 女人吃什么最补子宫 什么叫有气质 眼睛一直眨是什么原因 什么能什么力
卿卿是什么意思 不慎是什么意思 梦见杀猪是什么意思 丑时属什么 纤维化是什么意思
pcl是什么材料wuhaiwuya.com 舌苔厚口臭吃什么药好hcv7jop7ns2r.cn 紫绀是什么症状hcv8jop2ns5r.cn 什么是卤水hcv7jop6ns5r.cn 脸上起红疙瘩是什么原因hcv8jop6ns1r.cn
肾宝片有什么副作用吗hanqikai.com 吸顶灯什么牌子的好hcv8jop5ns3r.cn 为什么会低血压hcv8jop6ns2r.cn 载体是什么hcv8jop3ns5r.cn 试管都有什么方案hcv7jop5ns1r.cn
天津有什么特产hcv7jop5ns5r.cn 理疗师是做什么的hcv9jop4ns8r.cn 胶原蛋白什么时候喝最好hcv7jop6ns1r.cn 早上五六点是什么时辰hcv8jop9ns7r.cn 乙亥五行属什么hcv7jop9ns2r.cn
同房什么意思hcv9jop4ns9r.cn 一个木一个舌读什么hcv7jop7ns4r.cn 11.18是什么星座hcv9jop4ns0r.cn 楔形是什么形状hcv9jop4ns5r.cn 梦见自己尿裤子了是什么意思clwhiglsz.com
百度