vcr是什么| 天伦之乐什么意思| 晚上8点到9点是什么时辰| 肝右叶钙化灶是什么意思| 姑奶奶的老公叫什么| 胸上长痘痘是什么原因| 瞳孔缩小意味着什么| 美白吃什么| 横纹肌溶解是什么意思| 潘金莲属什么生肖| 肺部感染吃什么药效果好| 竹子开花意味着什么| 视网膜病变是什么意思| 口苦什么原因| 肉偿是什么意思| 卵泡长得慢是什么原因造成的| 硬膜囊受压是什么意思| 口疮是什么原因引起的| 癸未日五行属什么| 拔牙之后需要注意什么事项| 脸浮肿是什么原因| 坐立不安是什么意思| 艺高胆大是什么生肖| 历经是什么意思| 乳夹是什么| 如厕什么意思| 没字去掉三点水念什么| 华丽的近义词是什么| 幽门螺旋杆菌阳性是什么意思| 什么地响| 纤维蛋白是什么| 煮虾放什么| 三七治什么病最好| 沙土地适合种什么农作物| 经常打嗝放屁是什么原因| gopro是什么意思| 白细胞减少吃什么药| 阴道是什么意思| 六月十二日是什么日子| 红烧肉是什么菜系| 吃山楂有什么好处| 老掉头发是什么原因| 说话鼻音重是什么原因| 地藏菩萨的坐骑是什么| 烤麸是什么做的| 营养心脏最好的药是什么药| 天德是什么生肖| 贝前列素钠片主治什么病| 血压高是什么原因| 火车硬卧代硬座是什么意思| 潼字五行属什么| 甘草不能和什么一起吃| 窝窝头是用什么做的| 得艾滋病的前兆是什么| 月经为什么来了一点又不来了| 3D硬金是什么意思| 高什么亮什么| 小孩抵抗力差吃什么提高免疫力| 洛神是什么意思| 汗蒸有什么好处| 寒湿吃什么药| 心肌炎用什么药治疗最好| 圆周率是什么| 狸猫是什么猫| 耳鸣是什么病引起的| 三月14号是什么星座| 梦见梨是什么意思| 做梦梦到别人死了是什么征兆| 鼻血流不停是什么原因| 贴切的意思是什么| 睡眠障碍挂什么科| 女人胸疼是什么原因| 核桃什么时候成熟| 吃了兔子肉不能吃什么| 夏天喝什么好| 莫须有什么意思| 小儿支气管炎咳嗽吃什么药好得快| 三句半是什么意思| 打招呼是什么意思| elle是什么档次的牌子| 遗忘的遗是什么意思| qa和qc有什么区别| 肾病钾高吃什么食物好| 7月7是什么节日| 黄芪补什么| 九月三号是什么日子| 因果报应是什么意思| 产妇适合吃什么水果| 精子是什么样的| 高压高低压正常是什么原因| 乳头为什么会内陷| 刺梨根泡酒有什么功效| 放疗化疗有什么区别| 腹膜炎吃什么药| 并是什么意思| 睡不着觉吃什么药| 脚上有痣代表什么| 瞒天过海是什么意思| 精忠报国是什么生肖| 左肺下叶钙化灶是什么意思| 腋毛变白是什么原因| 脆豆腐是什么做的| 经血发黑什么原因| 禾五行属什么| 开救护车需要什么条件| s牌运动鞋是什么牌子| 做脑ct挂什么科| 揭榜是什么意思| 老人喝什么牛奶比较好| 鸣字五行属什么| 婚检是什么意思| 言字旁的字和什么有关| 糖皮质激素是什么药| 道是什么意思| 尿液中有泡沫是什么原因| 手背上有痣代表什么| 狮子的天敌是什么动物| 990金是什么金| 鼻后滴漏吃什么药| 肌无力吃什么药最好| 鲲是什么意思| 为什么同房会痛| 镜架什么材质好| 什么人骗别人也骗自己| 什么叫桥本甲状腺炎| 血糖有点高吃什么食物好| 能够握紧的就别放了是什么歌| 脐血流检查是什么| 什么的态度| 淋巴结节吃什么药| 般若是什么意思| 标准分是什么意思| 面肌痉挛吃什么药效果好| 汉菜不能和什么一起吃| 相安无事是什么意思| 山水有相逢是什么意思| 唉声叹气是什么意思| 心理疾病吃什么药| 躁动是什么意思| 爱的本质是什么| 寒冷性荨麻疹是什么原因引起的| 手上脱皮什么原因| 吃炒黑豆有什么好处和坏处| 手起倒刺吃什么维生素| 电脑什么时候发明的| 磋商是什么意思| 什么是易孕体质| 媒婆是什么意思| 胎盘位于前壁是什么意思| 肩膀酸痛什么原因| 什么的虫子| 李耳为什么叫老子| 佝偻病是缺什么| 脚心痛什么原因| 胃肠湿热吃什么中成药| 葡萄酒中的单宁是什么| 乙肝核心抗体阳性说明什么| josiny是什么牌子| 二甲医院是什么意思| 表姐的儿子叫什么| 耳石症是什么原因引起的| 忽冷忽热是什么意思| 是什么原因导致肥胖| 梦见捡花生是什么意思| 嘴唇紫色是什么原因| 市政协常委是什么级别| 慢性胃炎伴胆汁反流是什么意思| 肠粉为什么叫肠粉| 肺结节挂什么科| 农历今天属什么| 小便次数多是什么原因| 吃什么长个子| 皮夹克是什么意思| 脊椎炎什么症状| 不想要孩子用什么办法最好| 83年属什么生肖| 解大便时有鲜血流出是什么原因| 人黑穿什么颜色的衣服好看| 为什么会甲减| 上善若水什么意思| 真性情是什么意思| 打榜是什么意思| 梦到老公被蛇咬是什么意思| 滑档是什么意思| 冷鲜肉和新鲜肉有什么区别| 焦点是什么意思| 萎缩性胃炎吃什么药能治好| 什么是个性| 脚水肿是什么原因| 肌酐700多意味着什么| 为什么会想吐| 不以为然是什么意思| 气虚便秘吃什么中成药| 2001年属蛇五行属什么| 各的偏旁是什么| px是什么| 小五行属什么| 可见原始心管搏动是什么意思| 荨麻疹用什么药好| 脸颊两侧长痘痘什么原因| t波改变是什么意思| 什么什么自语| 一般什么意思| 男生为什么喜欢女生| 什么极了| 事无巨细什么意思| 青霉素过敏不能吃什么药| 3什么意思| 三个耳读什么| 木林森属于什么档次| 大头瘟现代叫什么病| 胎监什么时候开始做| 心有灵犀是什么意思| 做梦梦见屎是什么意思| 增加白细胞吃什么食物最好| 葫芦娃的爷爷叫什么| 反流性食管炎吃什么药最有效| 高压偏低是什么原因造成的| 孕妇羊水多是什么原因造成的| 罗汉果有什么作用| 直男是什么| 为什么会孕吐| 人见人爱是什么生肖| 乙肝两对半定量是什么意思| 咳嗽痰中带血是什么原因| 吃什么油最健康排行榜| 事宜什么意思| 玄府指的是什么| 结膜出血用什么眼药水| 麻痹是什么意思| 夏天用什么护肤品比较好| 手掌心痒是什么原因| 螃蟹不能跟什么一起吃| 脑血栓是什么原因引起的| 什么叫人工智能| 什么是荷尔蒙| 为什么医院不开金刚藤| 伴侣是什么| 打嗝不停是什么病前兆| qn医学上是什么意思| 什么是转氨酶| 脑白质脱髓鞘吃什么药| 四大皆空是什么意思| 少白头是什么原因| 高处不胜寒的胜是什么意思| 丧偶什么意思| aids是什么病的简称| 七月六号是什么星座| 健康证查什么| 欧亚斯密什么意思| 刚刚邹城出什么大事了| 梦见和老公吵架是什么意思| 大肠杆菌用什么药治疗效果好| 阿司匹林不能和什么药一起吃| 免疫肝是什么病| 蕾丝边是什么意思| 人出汗多是什么原因| 舒肝健胃丸治什么病| 咖色配什么颜色好看| 吃什么会变胖| 胸透是查什么的| 阴道黑是什么原因| 双相情感障碍什么意思| 维生素d低是什么原因| 百度Jump to content

车讯:将于CES上亮相 Eli ZERO电动车官图发布

From Wikipedia, the free encyclopedia
百度 西本新干线首席研究员邱跃成表示,来自需求端的消息更值得关注。

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train,[1][2] which is typically generated by the switching of a transistor.[3]

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely related to nonlinear system identification[4] and can be implemented in the time, frequency, and spatio-temporal domains.

The application of digital computation to signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[5] Digital signal processing is also fundamental to digital technology, such as digital telecommunication and wireless communications.[6] DSP is applicable to both streaming data and static (stored) data.

Signal sampling

[edit]

To digitally analyze and manipulate an analog signal, it must be digitized with an analog-to-digital converter (ADC).[7] Sampling is usually carried out in two stages, discretization and quantization. Discretization means that the signal is divided into equal intervals of time, and each interval is represented by a single measurement of amplitude. Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example.

The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal. In practice, the sampling frequency is often significantly higher than this.[8] It is common to use an anti-aliasing filter to limit the signal bandwidth to comply with the sampling theorem, however careful selection of this filter is required because the reconstructed signal will be the filtered signal plus residual aliasing from imperfect stop band rejection instead of the original (unfiltered) signal.

Theoretical DSP analyses and derivations are typically performed on discrete-time signal models with no amplitude inaccuracies (quantization error), created by the abstract process of sampling. Numerical methods require a quantized signal, such as those produced by an ADC. The processed result might be a frequency spectrum or a set of statistics. But often it is another quantized signal that is converted back to analog form by a digital-to-analog converter (DAC).

Domains

[edit]

DSP engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and wavelet domains. They choose the domain in which to process a signal by making an informed assumption (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal and the processing to be applied to it. A sequence of samples from a measuring device produces a temporal or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain representation.

Time and space domains

[edit]

Time domain refers to the analysis of signals with respect to time. Similarly, space domain refers to the analysis of signals with respect to position, e.g., pixel location for the case of image processing.

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. The surrounding samples may be identified with respect to time or space. The output of a linear digital filter to any given input may be calculated by convolving the input signal with an impulse response.

Frequency domain

[edit]

Signals are converted from time or space domain to the frequency domain usually through use of the Fourier transform. The Fourier transform converts the time or space information to a magnitude and phase component of each frequency. With some applications, how the phase varies with frequency can be a significant consideration. Where phase is unimportant, often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral analysis.

Filtering, particularly in non-realtime work, can also be achieved in the frequency domain, applying the filter and then converting back to the time domain. This can be an efficient implementation and can give essentially any filter response, including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of the original spectrum.

Z-plane analysis

[edit]

Digital filters come in both infinite impulse response (IIR) and finite impulse response (FIR) types. Whereas FIR filters are always stable, IIR filters have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is used to design and analyze analog IIR filters.

Autoregression analysis

[edit]

A signal is represented as linear combination of its previous samples. Coefficients of the combination are called autoregression coefficients. This method has higher frequency resolution and can process shorter signals compared to the Fourier transform.[9] Prony's method can be used to estimate phases, amplitudes, initial phases and decays of the components of signal.[10][9] Components are assumed to be complex decaying exponents.[10][9]

Time-frequency analysis

[edit]

A time-frequency representation of a signal can capture both temporal evolution and frequency structure of the signal. Temporal and frequency resolution are limited by the uncertainty principle and the tradeoff is adjusted by the width of the analysis window. Linear techniques such as Short-time Fourier transform, wavelet transform, filter bank,[11] non-linear (e.g., Wigner–Ville transform[10]) and autoregressive methods (e.g. segmented Prony method)[10][12][13] are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of fundamental frequency estimation, such as RAPT and PEFAC[14] are based on windowed spectral analysis.

Wavelet

[edit]
An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper-left.

In numerical analysis and functional analysis, a discrete wavelet transform is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information. The accuracy of the joint time-frequency resolution is limited by the uncertainty principle of time-frequency.

Empirical mode decomposition

[edit]

Empirical mode decomposition is based on decomposition signal into intrinsic mode functions (IMFs). IMFs are quasi-harmonical oscillations that are extracted from the signal.[15]

Implementation

[edit]

DSP algorithms may be run on general-purpose computers[16] and digital signal processors.[17] DSP algorithms are also implemented on purpose-built hardware such as application-specific integrated circuit (ASICs).[18] Additional technologies for digital signal processing include more powerful general-purpose microprocessors, graphics processing units, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors.[19]

For systems that do not have a real-time computing requirement and the signal data (either input or output) exists in data files, processing may be done economically with a general-purpose computer. This is essentially no different from any other data processing, except DSP mathematical techniques (such as the DCT and FFT) are used, and the sampled data is usually assumed to be uniformly sampled in time or space. An example of such an application is processing digital photographs with software such as Photoshop.

When the application requirement is real-time, DSP is often implemented using specialized or dedicated processors or microprocessors, sometimes using multiple processors or multiple processing cores. These may process data using fixed-point arithmetic or floating point. For more demanding applications FPGAs may be used.[20] For the most demanding applications or high-volume products, ASICs might be designed specifically for the application.

Parallel implementations of DSP algorithms, utilizing multi-core CPU and many-core GPU architectures, are developed to improve the performances in terms of latency of these algorithms.[21]

Native processing is done by the computer's CPU rather than by DSP or outboard processing, which is done by additional third-party DSP chips located on extension cards or external hardware boxes or racks. Many digital audio workstations such as Logic Pro, Cubase, Digital Performer and Pro Tools LE use native processing. Others, such as Pro Tools HD, Universal Audio's UAD-1 and TC Electronic's Powercore use DSP processing.

Applications

[edit]

General application areas for DSP include

Specific examples include speech coding and transmission in digital mobile phones, room correction of sound in hi-fi and sound reinforcement applications, analysis and control of industrial processes, medical imaging such as CAT scans and MRI, audio crossovers and equalization, digital synthesizers, and audio effects units.[22] DSP has been used in hearing aid technology since 1996, which allows for automatic directional microphones, complex digital noise reduction, and improved adjustment of the frequency response.[23]

Techniques

[edit]
[edit]

Further reading

[edit]
  • Ahmed, Nasir; Rao, Kamisetty Ramamohan (7 August 1975). "Orthogonal transforms for digital signal processing". ICASSP '76. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 1. New York: Springer-Verlag. pp. 136–140. doi:10.1109/ICASSP.1976.1170121. ISBN 978-3540065562. LCCN 73018912. OCLC 438821458. OL 22806004M. S2CID 10776771.
  • Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
  • James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
  • Dyer, Stephen A.; Harms, Brian K. (13 August 1993). "Digital Signal Processing". In Yovits, Marshall C. (ed.). Advances in Computers. Vol. 37. Academic Press. pp. 59–118. doi:10.1016/S0065-2458(08)60403-9. ISBN 978-0120121373. ISSN 0065-2458. LCCN 59015761. OCLC 858439915. OL 10070096M.
  • Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
  • Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
  • P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
  • Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
  • Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
  • Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
  • Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
  • Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
  • James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
  • Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
  • Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0-471-14961-6
  • John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN 978-0131873742
  • John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7
  • Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
  • Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
  • Smith, Steven W. (2002). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes. ISBN 0-7506-7444-X.
  • Stein, Jonathan Yaakov (2025-08-04). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN 0-471-29546-9.
  • Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN 0-8493-3691-0.
  • Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN 0-13-016077-6.
  • Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN 1-292-02572-7.
  • Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)

References

[edit]
  1. ^ B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN 9788120319561. Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
  2. ^ Joseph Migga Kizza (2005). Computer Network Security. Springer Science & Business Media. ISBN 9780387204734.
  3. ^ 2000 Solved Problems in Digital Electronics. Tata McGraw-Hill Education. 2005. p. 151. ISBN 978-0-07-058831-8.
  4. ^ Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN 978-1-119-94359-4.
  5. ^ Broesch, James D.; Stranneby, Dag; Walker, William (2025-08-04). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN 9780750689762.
  6. ^ Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653.
  7. ^ Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
  8. ^ Candes, E. J.; Wakin, M. B. (2008). "An Introduction To Compressive Sampling". IEEE Signal Processing Magazine. 25 (2): 21–30. Bibcode:2008ISPM...25...21C. doi:10.1109/MSP.2007.914731. S2CID 1704522.
  9. ^ a b c Marple, S. Lawrence (2025-08-04). Digital Spectral Analysis: With Applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-214149-9.
  10. ^ a b c d Ribeiro, M.P.; Ewins, D.J.; Robb, D.A. (2025-08-04). "Non-stationary analysis and noise filtering using a technique extended from the original Prony method". Mechanical Systems and Signal Processing. 17 (3): 533–549. Bibcode:2003MSSP...17..533R. doi:10.1006/mssp.2001.1399. ISSN 0888-3270. Retrieved 2025-08-04.
  11. ^ So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
  12. ^ Mitrofanov, Georgy; Priimenko, Viatcheslav (2025-08-04). "Prony Filtering of Seismic Data". Acta Geophysica. 63 (3): 652–678. Bibcode:2015AcGeo..63..652M. doi:10.1515/acgeo-2015-0012. ISSN 1895-6572. S2CID 130300729.
  13. ^ Mitrofanov, Georgy; Smolin, S. N.; Orlov, Yu. A.; Bespechnyy, V. N. (2020). "Prony decomposition and filtering". Geology and Mineral Resources of Siberia (2): 55–67. doi:10.20403/2078-0575-2020-2-55-67. ISSN 2078-0575. S2CID 226638723. Retrieved 2025-08-04.
  14. ^ Gonzalez, Sira; Brookes, Mike (February 2014). "PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (2): 518–530. doi:10.1109/TASLP.2013.2295918. ISSN 2329-9290. S2CID 13161793. Retrieved 2025-08-04.
  15. ^ Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H. (2025-08-04). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 454 (1971): 903–995. Bibcode:1998RSPSA.454..903H. doi:10.1098/rspa.1998.0193. ISSN 1364-5021. S2CID 1262186. Retrieved 2025-08-04.
  16. ^ Weipeng, Jiang; Zhiqiang, He; Ran, Duan; Xinglin, Wang (August 2012). "Major optimization methods for TD-LTE signal processing based on general purpose processor". 7th International Conference on Communications and Networking in China. pp. 797–801. doi:10.1109/ChinaCom.2012.6417593. ISBN 978-1-4673-2699-5. S2CID 17594911.
  17. ^ Zaynidinov, Hakimjon; Ibragimov, Sanjarbek; Tojiboyev, Gayrat; Nurmurodov, Javohir (2025-08-04). "Efficiency of Parallelization of Haar Fast Transform Algorithm in Dual-Core Digital Signal Processors". 2021 8th International Conference on Computer and Communication Engineering (ICCCE). IEEE. pp. 7–12. doi:10.1109/ICCCE50029.2021.9467190. ISBN 978-1-7281-1065-3. S2CID 236187914.
  18. ^ Lyakhov, P.A. (June 2023). "Area-Efficient digital filtering based on truncated multiply-accumulate units in residue number system 2 n - 1 , 2 n , 2 n + 1". Journal of King Saud University - Computer and Information Sciences. 35 (6): 101574. doi:10.1016/j.jksuci.2023.101574.
  19. ^ Stranneby, Dag; Walker, William (2004). Digital Signal Processing and Applications (2nd ed.). Elsevier. ISBN 0-7506-6344-8.
  20. ^ JPFix (2006). "FPGA-Based Image Processing Accelerator". Retrieved 2025-08-04.
  21. ^ Kapinchev, Konstantin; Bradu, Adrian; Podoleanu, Adrian (December 2019). "Parallel Approaches to Digital Signal Processing Algorithms with Applications in Medical Imaging". 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (PDF). pp. 1–7. doi:10.1109/ICSPCS47537.2019.9008720. ISBN 978-1-7281-2194-9. S2CID 211686462.
  22. ^ Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 978-0139141010.
  23. ^ Kerckhoff, Jessica; Listenberger, Jennifer; Valente, Michael (October 1, 2008). "Advances in hearing aid technology". Contemporary Issues in Communication Science and Disorders. 35: 102–112. doi:10.1044/cicsd_35_F_102.
土耳其是什么民族 八仙茶属于什么茶 5.13是什么星座 转念是什么意思 资生堂适合什么年龄段
sheep是什么意思 卵泡期是什么时候 血燥吃什么药 皮肤病用什么药膏好 腹胀吃什么药
猕猴桃是什么季节的水果 11楼五行属什么 亥是什么意思 老人吃什么水果好 脾阴虚吃什么中成药
什么飞机 兔子和什么属相相冲 半夏是什么 硼砂是干什么用的 什么枯石烂
h是什么牌子的衣服hcv7jop9ns9r.cn pp和ppsu有什么区别gysmod.com 飞行模式有什么用bfb118.com 民政局局长什么级别hcv8jop8ns0r.cn 贫血吃什么药最快hcv7jop9ns5r.cn
拉雪橇的狗是什么狗hcv9jop3ns1r.cn mommy什么意思hcv9jop6ns0r.cn 梅子是什么水果0735v.com 吃槐花有什么好处hcv9jop5ns0r.cn g代表什么单位1949doufunao.com
单方精油和复方精油有什么区别hcv9jop6ns3r.cn 什么是热辐射hcv9jop0ns6r.cn 猴赛雷什么意思hcv8jop2ns3r.cn 1994年属狗的是什么命hcv8jop0ns7r.cn 腹痛腹泻吃什么药hcv9jop4ns7r.cn
背部疼痛挂什么科cl108k.com 3月1日是什么星座hcv8jop5ns7r.cn 什么先什么后hcv9jop3ns4r.cn 心房扑动是什么意思hcv8jop5ns9r.cn pe是什么意思hcv9jop5ns4r.cn
百度