眉头有痣代表什么| 中元节开什么生肖| ptsd是什么意思| 什么是钼靶检查| 为什么月经老是提前| alp是什么意思| 猫为什么吃老鼠| 叶公好龙是什么生肖| 梦见抓螃蟹是什么征兆| 什么是员额制| 嘴唇干裂脱皮是什么原因| 心功能不全是什么意思| 什么地移入| 11月30是什么星座| 继发性肺结核是什么意思| 拍脑部ct挂什么科| 甲状腺结节不能吃什么食物| 什么时候初伏第一天| 骨量减少是什么意思| 奥美拉唑是什么药| 脚为什么会抽筋| 哪吒他妈叫什么名字| 什么病不能吃茄子| 去迪拜打工需要什么条件| 汐五行属性是什么| 正常人突然抽搐是什么原因| 喝醋有什么作用与功效| 什么药治鼻炎| 梦见抢银行是什么意思| 良去掉一点读什么| ut是什么意思| 夏天吃什么水果最好| 猎德有什么好玩的| 嗓子痒痒是什么原因| 鼻子里面痒是什么原因| 全身浮肿是什么病| 血管没有弹性是什么原因| 看舌头应该挂什么科| 胎位不正是什么原因导致的| 打脚是什么意思| 摩羯座女生和什么星座男生最配| 手机暂停服务是什么意思| 鸿五行属什么| 牙龈肿痛吃什么药| 额头长痘痘什么原因| 钓鲈鱼用什么饵最好| 争辩的近义词是什么| 尿糖一个加号是什么意思| 小舅子是什么关系| 直肠增生性的息肉是什么意思| 谢霆锋什么学历| 喝葡萄汁有什么好处| 风湿免疫科是看什么病的| 鞥是什么意思| 尿微量白蛋白是什么意思| 鼻涕倒流吃什么药| 1956年属什么生肖| 8.1号是什么星座| 癌症有什么症状| 腺样体肥大吃什么药| 50而知天命什么意思| 东字五行属什么| 白头发吃什么维生素| 姜水什么时候喝最好| 生产周期是什么意思| 三头六臂是什么生肖| 肠穿孔有什么症状| 胆水的成分是什么| 大豆油是什么豆做的| 脂溢性脱发是什么原因引起的| 吃什么治白头发| 木瓜是什么季节的水果| 左胳膊发麻是什么原因| 央行放水是什么意思| 脸红是什么原因| 什么是盗汗| 慢性肠炎吃什么药最好| 什么是六合| 嫁妆是什么意思| 风调雨顺是什么生肖| 口腔疱疹吃什么药| 吃什么能补肾| 鸡茸是什么东西| 斗鱼吃什么| 口臭是什么原因导致的呢| 喝白茶有什么好处| 食管反流用什么药效果好| 尿蛋白质阳性什么意思| 愿闻其详是什么意思| 内务是什么意思| 夜光杯是什么材质| 幽闭恐惧症是什么| homie是什么意思| 虎皮鹦鹉吃什么食物| 罹是什么意思| 什么是糖皮质激素| 半夜十二点是什么时辰| 草字头有什么字| 什么可以代替人体润滑油| 二级警监是什么级别| 妇科检查清洁度二度是什么意思| 为什么越吃越饿| 什么人不能念阿弥陀佛| 乙脑是什么病| 什么叫幽门螺旋杆菌| 什么叫词牌名| 鼻塞是什么原因| 9.20号是什么星座| 司空见惯是说司空见惯了什么| 辅酶q10什么时候吃| 猪八戒的真名叫什么| 玉米淀粉可以做什么| 下身灼热感什么原因| 百香果有什么好处| 房颤是什么病严重吗| 喝什么睡眠效果最好| 风湿和类风湿有什么区别| 嗓子有黄痰是什么原因| 一九八八年属什么生肖| 坚果都有什么| 什么是穴位| 内科主要看什么病| 吃芒果过敏是什么症状| 梦见佛祖是什么意思| 一票制什么意思| max是什么意思| 什么水果清热去火| 脸色苍白没有血色是什么原因| 哺乳期妈妈感冒了可以吃什么药| 吃什么补硒最快最好| 三伏贴有什么功效| 里程是什么意思| 中图分类号是什么| 米虫长什么样| 乌龟为什么喜欢叠罗汉| 舌苔有裂纹是什么原因| 康熙姓什么| 皮肤黄是什么原因引起的| 布谷鸟长什么样| 操逼什么意思| 750金是什么金| 大门是什么生肖| 毛血旺是什么菜| 禅悟是什么意思| 曹操的小名叫什么| 什么菜好吃| 梦见下雨是什么预兆| 文心什么字| 炊饼是什么| 梦见死人了是什么预兆| 有眼不识泰山是什么意思| 钾是什么| 郑成功是什么朝代的| 黄连是什么| 源源不断是什么意思| 凭什么| 花名是什么意思| 福是什么生肖| 吃完杏不能吃什么| 吃什么对脑血管好| 吃芒果有什么好处和坏处| 苒字五行属什么| 不放屁是什么原因| 肾不好挂什么科| 85年是什么命| 耳蜗是什么| 做梦梦到拉屎是什么意思| 网球ad是什么意思| 三角梅用什么肥料最好| 六零年属什么生肖| 血粘度查什么项目| 92年属猴的是什么命| 奎宁现在叫什么药| 贫血吃什么水果好| 降压药什么时间吃最好| 中年人手抖是什么原因| qn是什么医嘱| 晕车药什么时候吃| sat是什么考试| 苔藓是什么植物| 为什么会有耳石症| 为什么会得糖尿病| 餐补是什么意思| 一厢情愿是什么生肖| 鸡眼和疣有什么区别| 柳树的叶子像什么| 金牛座是什么星座| 医院属于什么性质的单位| 呵呵的含义是什么意思| 囊肿与肿瘤有什么区别| 笔走龙蛇是什么生肖| 咖啡加奶有什么坏处和好处| 什么叫代孕| 牙齿根部发黑是什么原因| 依西美坦最佳服用时间是什么时间| 高瞻远瞩是什么生肖| 血小板吃什么补得快点| trust什么意思| 63年属什么| 嘉靖为什么不杀严嵩| 除皱针什么牌子效果最好| 洛五行属性是什么| 排卵期有什么明显症状| 吃什么补阳气最快| 多发结节是什么意思| 每天坚持跑步有什么好处| 榔头是什么意思| 梦见自己拉粑粑是什么意思| 以逸待劳是什么意思| 玉米须泡水喝有什么功效| 坊字五行属什么| 胃酸是什么症状| 冬至为什么烧纸| 热伤风吃什么药| 早上的太阳叫什么| 韧带钙化是什么意思| 老鼠最怕什么气味驱赶| 梦到和男朋友分手是什么征兆| 林冲到底属什么生肖的| 单亲家庭是什么意思| r代表什么意思| 洁颜蜜是什么| 乙肝病毒表面抗体弱阳性什么意思| 媱五行属什么| 流鼻血是什么原因引起的| 月子中心需要什么资质| 人在囧途是什么意思| 斯德哥尔摩是什么意思| 精神什么| 农历11月14日是什么星座| 胃疼吃什么好| 氧化钠是什么| 17点到19点是什么时辰| 前列腺炎中医叫什么病| 煮中药用什么锅| 铁是什么元素| 娘子啊哈是什么歌| 清热去湿热颗粒有什么功效| 中国文字博大精深什么意思| 码放是什么意思| 红色菜叶的菜是什么菜| hc是什么意思| 今年22岁属什么生肖| 被老鼠咬了有什么预兆| 为什么牙缝里的东西很臭| 男人结扎对身体有什么影响| 促甲状腺激素偏高有什么症状| 好事多磨是什么意思| 量贩什么意思| ufc什么意思| 中药地龙是什么| 大什么| 脾不好吃什么药最见效| 荠菜长什么样子图片| 酥油茶是什么做的| 脑梗的前兆是什么| 青椒炒什么好吃又简单| 吃惊的什么| 小女子这厢有礼了什么意思| 血清肌酐高说明什么问题| 阳性是什么病| 澈字五行属什么| 什么是浸润性乳腺癌| 眼睛为什么会近视| 百度Jump to content

梦见小麦粒是什么意思

From Wikipedia, the free encyclopedia
3D reconstruction of the general anatomy of the right side view of a small marine slug Pseudunela viatoris.
百度 陈亚雷在新闻发布会上说:中国正在成为重要的全球力量,这让年青一代对身为中国人更加自豪。

In computer vision and computer graphics, 3D reconstruction is the process of capturing the shape and appearance of real objects. This process can be accomplished either by active or passive methods.[1] If the model is allowed to change its shape in time, this is referred to as non-rigid or spatio-temporal reconstruction.[2]

Motivation and applications

[edit]

The research of 3D reconstruction has always been a difficult goal. By Using 3D reconstruction one can determine any object's 3D profile, as well as knowing the 3D coordinate of any point on the profile. The 3D reconstruction of objects is a generally scientific problem and core technology of a wide variety of fields, such as Computer Aided Geometric Design (CAGD), computer graphics, computer animation, computer vision, medical imaging, computational science, virtual reality, digital media, etc.[3] For instance, the lesion information of the patients can be presented in 3D on the computer, which offers a new and accurate approach in diagnosis and thus has vital clinical value.[4] Digital elevation models can be reconstructed using methods such as airborne laser altimetry[5] or synthetic aperture radar.[6]

Active methods

[edit]
3D echo sounding map of an underwater canyon

Active methods, i.e. range data methods, given the depth map, reconstruct the 3D profile by numerical approximation approach and build the object in scenario based on model. These methods actively interfere with the reconstructed object, either mechanically or radiometrically using rangefinders, in order to acquire the depth map, e.g. structured light, laser range finder and other active sensing techniques. A simple example of a mechanical method would use a depth gauge to measure a distance to a rotating object put on a turntable. More applicable radiometric methods emit radiance towards the object and then measure its reflected part. Examples range from moving light sources, colored visible light, time-of-flight lasers [7] to microwaves or 3D ultrasound. See 3D scanning for more details.

Passive methods

[edit]

Passive methods of 3D reconstruction do not interfere with the reconstructed object; they only use a sensor to measure the radiance reflected or emitted by the object's surface to infer its 3D structure through image understanding.[8] Typically, the sensor is an image sensor in a camera sensitive to visible light and the input to the method is a set of digital images (one, two or more) or video. In this case we talk about image-based reconstruction and the output is a 3D model. By comparison to active methods, passive methods can be applied to a wider range of situations.[9]

Monocular cues methods

[edit]

Monocular cues methods refer to using one or more images from one viewpoint (camera) to proceed to 3D construction. It makes use of 2D characteristics(e.g. Silhouettes, shading and texture) to measure 3D shape, and that's why it is also named Shape-From-X, where X can be silhouettes, shading, texture etc. 3D reconstruction through monocular cues is simple and quick, and only one appropriate digital image is needed thus only one camera is adequate. Technically, it avoids stereo correspondence, which is fairly complex.[10]

Generating and reconstructing 3D shapes from single or multi-view depth maps or silhouettes[11]
A "visual hull" reconstructed from multiple viewpoints

Shape-from-shading Due to the analysis of the shade information in the image, by using Lambertian reflectance, the depth of normal information of the object surface is restored to reconstruct.[12]

Photometric Stereo This approach is more sophisticated than the shape-of-shading method. Images taken in different lighting conditions are used to solve the depth information. It is worth mentioning that more than one image is required by this approach.[13]

Shape-from-texture Suppose such an object with smooth surface covered by replicated texture units, and its projection from 3D to 2D causes distortion and perspective. Distortion and perspective measured in 2D images provide the hint for inversely solving depth of normal information of the object surface.[14]

Machine Learning Based Solutions Machine learning enables learning the correspondance between the subtle features in the input and the respective 3D equivalent. Deep neural networks have shown to be highly effective for 3D reconstruction from a single color image. [15] This works even for non-photorealistic input images such as sketches. [16] Thanks to the high level of accuracy in the reconstructed 3D features, deep learning based method has been employed for biomedical engineering applications to reconstruct CT imagery from X-ray. [17]

Stereo vision

[edit]

Stereo vision obtains the 3-dimensional geometric information of an object from multiple images based on the research of human visual system.[18] The results are presented in form of depth maps. Images of an object acquired by two cameras simultaneously in different viewing angles, or by one single camera at different time in different viewing angles, are used to restore its 3D geometric information and reconstruct its 3D profile and location. This is more direct than Monocular methods such as shape-from-shading.

Binocular stereo vision method requires two identical cameras with parallel optical axis to observe one same object, acquiring two images from different points of view. In terms of trigonometry relations, depth information can be calculated from disparity. Binocular stereo vision method is well developed and stably contributes to favorable 3D reconstruction, leading to a better performance when compared to other 3D construction. Unfortunately, it is computationally intensive, besides it performs rather poorly when baseline distance is large.

Problem statement and basics

[edit]

The approach of using Binocular stereo vision to acquire object's 3D geometric information is on the basis of visual disparity.[19] The following picture provides a simple schematic diagram of horizontally sighted Binocular Stereo Vision, where b is the baseline between projective centers of two cameras.

Geometry of a stereoscopic system

The origin of the camera's coordinate system is at the optical center of the camera's lens as shown in the figure. Actually, the camera's image plane is behind the optical center of the camera's lens. However, to simplify the calculation, images are drawn in front of the optical center of the lens by f. The u-axis and v-axis of the image's coordinate system are in the same direction with x-axis and y-axis of the camera's coordinate system respectively. The origin of the image's coordinate system is located on the intersection of imaging plane and the optical axis. Suppose such world point whose corresponding image points are and respectively on the left and right image plane. Assume two cameras are in the same plane, then y-coordinates of and are identical, i.e.,. According to trigonometry relations,

where are coordinates of in the left camera's coordinate system, is focal length of the camera. Visual disparity is defined as the difference in image point location of a certain world point acquired by two cameras,

based on which the coordinates of can be worked out.

Therefore, once the coordinates of image points is known, besides the parameters of two cameras, the 3D coordinate of the point can be determined.

The 3D reconstruction consists of the following sections:

Image acquisition

[edit]

2D digital image acquisition is the information source of 3D reconstruction. Commonly used 3D reconstruction is based on two or more images, although it may employ only one image in some cases. There are various types of methods for image acquisition that depends on the occasions and purposes of the specific application. Not only the requirements of the application must be met, but also the visual disparity, illumination, performance of camera and the feature of scenario should be considered.

Camera calibration

[edit]

Camera calibration in Binocular Stereo Vision refers to the determination of the mapping relationship between the image points and , and space coordinate in the 3D scenario. Camera calibration is a basic and essential part in 3D reconstruction via Binocular Stereo Vision.

Feature extraction

[edit]

The aim of feature extraction is to gain the characteristics of the images, through which the stereo correspondence processes. As a result, the characteristics of the images closely link to the choice of matching methods. There is no such universally applicable theory for features extraction, leading to a great diversity of stereo correspondence in Binocular Stereo Vision research.

Stereo correspondence

[edit]

Stereo correspondence is to establish the correspondence between primitive factors in images, i.e. to match and from two images. Certain interference factors in the scenario should be noticed, e.g. illumination, noise, surface physical characteristic, etc.

Restoration

[edit]

According to precise correspondence, combined with camera location parameters, 3D geometric information can be recovered without difficulties. Due to the fact that accuracy of 3D reconstruction depends on the precision of correspondence, error of camera location parameters and so on, the previous procedures must be done carefully to achieve relatively accurate 3D reconstruction.

3D Reconstruction of medical images

[edit]

Clinical routine of diagnosis, patient follow-up, computer assisted surgery, surgical planning etc. are facilitated by accurate 3D models of the desired part of human anatomy. Main motivation behind 3D reconstruction includes

  • Improved accuracy due to multi view aggregation.
  • Detailed surface estimates.
  • Can be used to plan, simulate, guide, or otherwise assist a surgeon in performing a medical procedure.
  • The precise position and orientation of the patient's anatomy can be determined.
  • Helps in a number of clinical areas, such as radiotherapy planning and treatment verification, spinal surgery, hip replacement, neurointerventions and aortic stenting.

Applications:

3D reconstruction has applications in many fields. They include:

Problem Statement:

Mostly algorithms available for 3D reconstruction are extremely slow and cannot be used in real-time. Though the algorithms presented are still in infancy but they have the potential for fast computation.

Existing Approaches:

Delaunay triangulation (25 Points)

Delaunay and alpha-shapes

  • Delaunay method involves extraction of tetrahedron surfaces from initial point cloud. The idea of ‘shape’ for a set of points in space is given by concept of alpha-shapes. Given a finite point set S, and the real parameter alpha, the alpha-shape of S is a polytope (the generalization to any dimension of a two dimensional polygon and a three-dimensional polyhedron) which is neither convex nor necessarily connected.[33] For a large value, the alpha-shape is identical to the convex-hull of S. The algorithm proposed by Edelsbrunner and Mucke[34] eliminates all tetrahedrons which are delimited by a surrounding sphere smaller than α. The surface is then obtained with the external triangles from the resulting tetrahedron.[34]
  • Another algorithm called Tight Cocone[35] labels the initial tetrahedrons as interior and exterior. The triangles found in and out generate the resulting surface.

Both methods have been recently extended for reconstructing point clouds with noise.[35] In this method the quality of points determines the feasibility of the method. For precise triangulation since we are using the whole point cloud set, the points on the surface with the error above the threshold will be explicitly represented on reconstructed geometry.[33]

Marching Cubes

Zero set Methods

Reconstruction of the surface is performed using a distance function which assigns to each point in the space a signed distance to the surface S. A contour algorithm is used to extracting a zero-set which is used to obtain polygonal representation of the object. Thus, the problem of reconstructing a surface from a disorganized point cloud is reduced to the definition of the appropriate function f with a zero value for the sampled points and different to zero value for the rest. An algorithm called marching cubes established the use of such methods.[36] There are different variants for given algorithm, some use a discrete function f, while other use a polyharmonic radial basis function is used to adjust the initial point set.[37][38] Functions like Moving Least Squares, basic functions with local support,[39] based on the Poisson equation have also been used. Loss of the geometry precision in areas with extreme curvature, i.e., corners, edges is one of the main issues encountered. Furthermore, pretreatment of information, by applying some kind of filtering technique, also affects the definition of the corners by softening them. There are several studies related to post-processing techniques used in the reconstruction for the detection and refinement of corners but these methods increase the complexity of the solution.[40]

Solid geometry with volume rendering Image courtesy of Patrick Chris Fragile Ph.D., UC Santa Barbara

VR Technique

Entire volume transparence of the object is visualized using VR technique. Images will be performed by projecting rays through volume data. Along each ray, opacity and color need to be calculated at every voxel. Then information calculated along each ray will to be aggregated to a pixel on image plane. This technique helps us to see comprehensively an entire compact structure of the object. Since the technique needs enormous amount of calculations, which requires strong configuration computers is appropriate for low contrast data. Two main methods for rays projecting can be considered as follows:

  • Object-order method: Projecting rays go through volume from back to front (from volume to image plane).
  • Image-order or ray-casting method: Projecting rays go through volume from front to back (from image plane to volume).There exists some other methods to composite image, appropriate methods depending on the user's purposes. Some usual methods in medical image are MIP (maximum intensity projection), MinIP (minimum intensity projection), AC (alpha compositing) and NPVR (non-photorealistic volume rendering).
Tracing a ray through a voxel grid. The voxels which are traversed in addition to those selected using a standard 8-connected algorithm are shown hatched.

Voxel Grid

In this filtering technique input space is sampled using a grid of 3D voxels to reduce the number of points.[41] For each voxel, a centroid is chosen as the representative of all points. There are two approaches, the selection of the voxel centroid or select the centroid of the points lying within the voxel. To obtain internal points average has a higher computational cost, but offers better results. Thus, a subset of the input space is obtained that roughly represents the underlying surface. The Voxel Grid method presents the same problems as other filtering techniques: impossibility of defining the final number of points that represent the surface, geometric information loss due to the reduction of the points inside a voxel and sensitivity to noisy input spaces.

See also

[edit]

References

[edit]
  1. ^ Moons, Theo, Luc Van Gool, and Maarten Vergauwen. "3D reconstruction from multiple images part 1: Principles." Foundations and Trends in Computer Graphics and Vision 4.4 (2010): 287-404.
  2. ^ Zollh?fer, Michael, et al. "Real-time non-rigid reconstruction using an RGB-D camera." ACM Transactions on Graphics 33.4 (2014): 156.
  3. ^ "The Future of 3D Modeling". GarageFarm. 2025-08-06. Retrieved 2025-08-06.
  4. ^ a b Liping Zheng; Guangyao Li; Jing Sha (2007). "The survey of medical image 3D reconstruction". In Luo, Qingming; Wang, Lihong V.; Tuchin, Valery V.; Gu, Min (eds.). Fifth International Conference on Photonics and Imaging in Biology and Medicine. Proceedings of SPIE. Vol. 6534. pp. 65342K–65342K–6. doi:10.1117/12.741321. S2CID 62548928.
  5. ^ Vosselman, George, and Sander Dijkman. "3D building model reconstruction from point clouds and ground plans." International archives of photogrammetry remote sensing and spatial information sciences 34.3/W4 (2001): 37-44.
  6. ^ Colesanti, Carlo, and Janusz Wasowski. "Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry." Engineering geology 88.3-4 (2006): 173-199.
  7. ^ a b Mahmoudzadeh, Ahmadreza; Golroo, Amir; Jahanshahi, Mohammad R.; Firoozi Yeganeh, Sayna (January 2019). "Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor". Sensors. 19 (7): 1655. Bibcode:2019Senso..19.1655M. doi:10.3390/s19071655. PMC 6479490. PMID 30959936.
  8. ^ Buelthoff, Heinrich H., and Alan L. Yuille. "Shape-from-X: Psychophysics and computation Archived 2025-08-06 at the Wayback Machine." Fibers' 91, Boston, MA. International Society for Optics and Photonics, 1991.
  9. ^ Moons, Theo (2010). 3D reconstruction from multiple images. Part 1, Principles. Gool, Luc van., Vergauwen, Maarten. Hanover, MA: Now Publishers, Inc. ISBN 978-1-60198-285-8. OCLC 607557354.
  10. ^ Saxena, Ashutosh; Sun, Min; Ng, Andrew Y. (2007). "3-D Reconstruction from Sparse Views using Monocular Vision". 2007 IEEE 11th International Conference on Computer Vision. pp. 1–8. CiteSeerX 10.1.1.78.5303. doi:10.1109/ICCV.2007.4409219. ISBN 978-1-4244-1630-1. S2CID 17571812.
  11. ^ Soltani, A.A.; Huang, H.; Wu, J.; Kulkarni, T.D.; Tenenbaum, J.B. (2017). "Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes With Deep Generative Networks". Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1511–1519 – via GitHub.
  12. ^ Horn, Berthold KP. "Shape from shading: A method for obtaining the shape of a smooth opaque object from one view." (1970).
  13. ^ Woodham, Robert J. (1980). "Photometric method for determining surface orientation from multiple images" (PDF). Optical Engineering. 19 (1): 138–141. Bibcode:1980OptEn..19..139W. doi:10.1117/12.7972479. Archived from the original (PDF) on 2025-08-06.
  14. ^ Witkin, Andrew P. (1981). "Recovering surface shape and orientation from texture" (PDF). Artificial Intelligence. 17 (1–3): 17–45. doi:10.1016/0004-3702(81)90019-9.
  15. ^ Feng, Qi; Shum, Hubert P. H.; Morishima, Shigeo (2022). "360 Depth Estimation in the Wild - The Depth360 Dataset and the SegFuse Network". 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE. pp. 664–673. arXiv:2202.08010. doi:10.1109/VR51125.2022.00087. ISBN 978-1-6654-9617-9.
  16. ^ Nozawa, Naoki; Shum, Hubert P. H.; Feng, Qi; Ho, Edmond S. L.; Morishima, Shigeo (2022). "3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning". Visual Computer. 38 (4). Springer: 1317–1330. doi:10.1007/s00371-020-02024-y. ISSN 1432-2315.
  17. ^ Corona-Figueroa, Abril; Bond-Taylor, Sam; Bhowmik, Neelanjan; Gaus, Yona Falinie A.; Breckon, Toby P.; Shum, Hubert P. H.; Willcocks, Chris G. (2023). Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers. IEEE/CVF. arXiv:2308.14152.
  18. ^ Kass, Michael; Witkin, Andrew; Terzopoulos, Demetri (1988). "Snakes: Active contour models" (PDF). International Journal of Computer Vision. 1 (4): 321–331. doi:10.1007/BF00133570. S2CID 12849354.
  19. ^ McCoun, Jacques, and Lucien Reeves. Binocular vision: development, depth perception and disorders. Nova Science Publishers, Inc., 2010.
  20. ^ Mahmoudzadeh, Ahmadreza; Yeganeh, Sayna Firoozi; Golroo, Amir (2025-08-06). "3D pavement surface reconstruction using an RGB-D sensor". arXiv:1907.04124 [cs.CV].
  21. ^ Carranza, Joel, et al. "Free-viewpoint video of human actors." ACM Transactions on Graphics. Vol. 22. No. 3. ACM, 2003.
  22. ^ Thrun, Sebastian. "Robotic mapping: A survey." Exploring artificial intelligence in the new millennium 1.1-35 (2002): 1.
  23. ^ Poullis, Charalambos; You, Suya (May 2011). "3D Reconstruction of Urban Areas". 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. pp. 33–40. doi:10.1109/3dimpvt.2011.14. ISBN 978-1-61284-429-9. S2CID 1189988.
  24. ^ Xu, Fang, and Klaus Mueller. "Real-time 3D computed tomographic reconstruction using commodity graphics hardware Archived 2025-08-06 at the Wayback Machine." Physics in Medicine & Biology 52.12 (2007): 3405.
  25. ^ a b Mortara, Michela, et al. "Learning cultural heritage by serious games." Journal of Cultural Heritage 15.3 (2014): 318-325.
  26. ^ Bruno, Fabio; et al. (January–March 2010). "From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition". Journal of Cultural Heritage. 11 (1): 42–49. doi:10.1016/j.culher.2009.02.006 – via ResearchGate.
  27. ^ Izadi, Shahram, et al. "KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera." Proceedings of the 24th annual ACM symposium on User interface software and technology. ACM, 2011.
  28. ^ Wang, Jun; Gu, Dongxiao; Yu, Zeyun; Tan, Changbai; Zhou, Laishui (December 2012). "A framework for 3D model reconstruction in reverse engineering". Computers & Industrial Engineering. 63 (4): 1189–1200. doi:10.1016/j.cie.2012.07.009.
  29. ^ Moeslund, Thomas B., and Erik Granum. "A survey of computer vision-based human motion capture." Computer vision and image understanding 81.3 (2001): 231-268.
  30. ^ Leonardo Gomes, Olga Regina Pereira Bellon, Luciano Silva. "3D reconstruction methods for digital preservation of cultural heritage: A survey." Pattern Recognition Letters 50 (2014): 3-14.
  31. ^ Hejrati, Mohsen, and Deva Ramanan. "Analysis by synthesis: 3d object recognition by object reconstruction." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014.
  32. ^ Keskin, Cem, Ayse Erkan, and Lale Akarun. "Real time hand tracking and 3d gesture recognition for interactive interfaces using hmm." ICANN/ICONIPP 2003 (2003): 26-29.
  33. ^ a b Angelopoulou, A.; Psarrou, A.; Garcia-Rodriguez, J.; Orts-Escolano, S.; Azorin-Lopez, J.; Revett, K. (20 February 2015). "3D reconstruction of medical images from slices automatically landmarked with growing neural models" (PDF). Neurocomputing. 150 (Part A): 16–25. doi:10.1016/j.neucom.2014.03.078. hdl:10045/42544.
  34. ^ a b Edelsbrunner, Herbert; Mücke, Ernst (January 1994). "Three-dimensional alpha shapes". ACM Trans. Graph. 13 (1): 43–72. arXiv:math/9410208. Bibcode:1994math.....10208E. doi:10.1145/174462.156635. S2CID 1600979.
  35. ^ a b Dey, Tamal K.; Goswami, Samrat (August 2006). "Probable surface reconstruction from noisy samples". Computational Geometry. 35 (1–2): 124–141. doi:10.1016/j.comgeo.2005.10.006.
  36. ^ Lorensen, William E.; Cline, Harvey E. (July 1987). "Marching cubes: A high resolution 3D surface construction algorithm". ACM SIGGRAPH Computer Graphics. 21 (4): 163–169. CiteSeerX 10.1.1.545.613. doi:10.1145/37402.37422.
  37. ^ Hoppe, Hugues; DeRose, Tony; Duchamp, Tom; McDonald, John; Stuetzle, Werner (July 1992). "Surface reconstruction from unorganized points". ACM SIGGRAPH Computer Graphics. 26 (2): 71–78. CiteSeerX 10.1.1.5.3672. doi:10.1145/142920.134011.
  38. ^ Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. (2001). "Reconstruction and representation of 3d objects with radial basis functions" (PDF). 28th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH 2001. ACM. pp. 67–76.
  39. ^ Walder, C.; Sch?lkopf, B.; Chapelle, O. (2006). "Implicit Surface Modelling with a Globally Regularised Basis of Compact Support" (PDF). Eurographics. 25 (3). Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  40. ^ Wang, C.L. (June 2006). "Incremental reconstruction of sharp edges on mesh surfaces". Computer-Aided Design. 38 (6): 689–702. doi:10.1016/j.cad.2006.02.009.
  41. ^ Connolly, C. (1984). "Cumulative generation of octree models from range data". Proceedings. 1984 IEEE International Conference on Robotics and Automation. Vol. 1. pp. 25–32. doi:10.1109/ROBOT.1984.1087212.
[edit]
[edit]
大便绿色是什么原因 牙根变黑是什么原因 曲解什么意思 刘封为什么不救关羽 fed是什么意思
什么是心梗 脑震荡挂什么科 新生儿痤疮是什么引起的 左侧小腹疼是什么原因 左手抖动是什么原因
风湿性关节炎用什么药效果好 89年五行属什么 做梦放鞭炮什么意思 电器着火用什么灭火器 清洁度三度什么意思
多保重是什么意思 湿气重的人喝四物汤会有什么 三点水一个高念什么 乙肝核心抗体阳性什么意思 笙字五行属什么
皮肤爱出油是什么原因hcv9jop1ns8r.cn 酒糟鼻买什么药膏去红jasonfriends.com 吃什么排气hcv9jop1ns4r.cn 江浙沪是什么意思hcv9jop4ns0r.cn 欲情故纵是什么意思hcv9jop1ns4r.cn
心脏不舒服做什么检查hkuteam.com 什么令什么申hcv8jop2ns9r.cn 菊花有什么作用hcv8jop3ns3r.cn 来月经为什么会拉肚子hcv7jop6ns3r.cn 区局长是什么级别hcv8jop4ns2r.cn
海蓝之谜适合什么年龄hcv7jop7ns3r.cn 女生下体长什么样hcv8jop8ns5r.cn 子卯相刑有什么危害0735v.com 医保定点是什么意思hcv8jop2ns8r.cn 正骨有什么好处和坏处hcv9jop3ns1r.cn
黑脸是什么意思hcv8jop2ns9r.cn 曼月乐是什么bfb118.com 千呼万唤是什么生肖hcv9jop7ns9r.cn 以逸待劳是什么意思inbungee.com 空是什么结构hcv8jop1ns2r.cn
百度